Return to search

The Biomechanical Evolution of Mammalian Prismatic Enamel with Potential Application to Biomimetic Ceramic Development

Biological hard materials are a remarkable class of materials combining large volumes of mineral with minute organic components into often complex, hierarchical microstructural arrangements. These intricate microstructures offer ideal systems from which form-function relationships can be dissected due to their limited functional demands. They are also of increasing interest to the materials science community due to their high combinations of stiffness and toughness unexpected of ceramic-like materials. Individually, each approach for understanding these materials has suffered from a lack of insight from the other field: the biological perspective has suffered from a lack of analytical rigor while the engineering perspective has been ignorant to the intricacies of evolution as needed to accurately infer the original and current function of these structures. Here I present and execute a unified framework for examining biological hard materials. In order to identify the mechanical import of microstructural changes, this framework tests changes in biologically relevant material properties by measuring mechanical response across the transformation series of microstructures observed in conjunction with ecological shifts. In order to apply this framework, I use mammalian dental enamel as a model system. Dental enamel is the most mineralized tissue in the vertebrate body and is non-repairable and irreplaceable if damaged. Arguably, it has only two functions: transfer masticatory loads to ingesta and resist its own degradation. In mammals, the evolution of a critical tissue constituent--the enamel prism--has resulted in a multitude of enamel microstructural arrangements, some of which have independently evolved consistently in ecologically similar contexts. I sought to characterize changes in the mechanical response of enamel microstructures by providing a survey of elastic modulus and fracture toughness for a diversity of mammals showing a broad array of microstructural forms. Considering the mechanics of damage to mammalian enamel as they pertain to documented microstructural changes within lineages, I then identified three critical functional transitions in enamel microstructures. These functional transitions include: (1) the evolution of the enamel prism, (2) the adaptation to a high wear diet, and (3) the adaptation to a high fracture diet. I investigated potential changes in material response across these transitions. Methodologically, I measured elastic modulus using instrumented nanoindentation across a series of reptilian and mammalian enamels to examine differences in resistance to elastic deformation. I then verified and executed a new method for determining the intrinsic fracture toughness of enamel, crack tip opening displacement, and identified changes in small scale resistance to fracture. I used Vickers microindentation to evaluate differences in resistance to plastic deformation. Lastly, I developed a novel method for quantifying fracture orientation, called Crack Analysis of Propagation Orientation (CAPO). CAPO identifies directions of preferred cracking and provides a proxy of resistance to large-scale fracture effects. These data provide consistent evidence that mammalian enamel microstructures are remarkably consistent in elastic modulus, intrinsic fracture toughness, and hardness. This consistency and their correspondence to values reported in the literature suggests that selection has acted to make enamel microstructures as stiff, hard, and intrinsically tough as possible given the inherent developmental constraints of amelogenesis and material constraints of hydroxyapatite. However, they display marked quantitative and qualitative differences in their resistance to large-scale fracture. Contact with hard particulates in the environment such as plant phytoliths or exogenous grit are expected to result in local indentation damage and the removal of enamel through microcrack growth. Grazing taxa have enamels which include modified radial enamel, a microstructure that channels indentation crack growth into a single direction and suppresses subsurface lateral crack growth. Together, these mechanisms would reduce the removal of enamel pieces by inhibiting microcrack coalescence and offer increased resistance to severe wear. Conversely, contact with large objects such as bone are expected to result in fractures which propagate across the tooth surface. Carnivoran Hunter-Schreger bands qualitatively suppress fracture across bands; this behavior could provide resistance to fatigue crack growth. These results provide evidence that mammalian enamel microstructures are consistent in many of the commonly reported material properties but differ primarily in their large-scale fracture behavior. They further offer avenues for biomimetic ceramic composites with consistent hardness and moduli but with potential damage and fatigue tolerance specific to the loading scenario. / A Dissertation submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy. / Summer Semester 2018. / July 6, 2018. / Biomimetic, Enamel, Mammal, Material Properties, Microstructure, Teeth / Includes bibliographical references. / Gregory Erickson, Professor Directing Dissertation; William Oates, University Representative; Brian Inouye, Committee Member; William Parker, Committee Member; Scott Steppan, Committee Member.

Identiferoai:union.ndltd.org:fsu.edu/oai:fsu.digital.flvc.org:fsu_650713
ContributorsKuhn-Hendricks, Stephen Michael (author), Erickson, Gregory M. (professor directing dissertation), Oates, William (university representative), Inouye, Brian D. (committee member), Parker, William C (committee member), Steppan, Scott J. (committee member), Florida State University (degree granting institution), College of Arts and Sciences (degree granting college), Department of Biological Science (degree granting departmentdgg)
PublisherFlorida State University
Source SetsFlorida State University
LanguageEnglish, English
Detected LanguageEnglish
TypeText, text, doctoral thesis
Format1 online resource (458 pages), computer, application/pdf

Page generated in 0.0032 seconds