Return to search

Genomic Tools Reveal Changing Plasmodium falciparum Populations

A new era of malaria eradication programs relies on increased knowledge of the parasite through sequencing of the Plasmodium genome. Programs call for re-orientation at specific epidemiological markers as regions move from control towards pre- and total elimination. However, relatively little is known about the effects of intervention strategies on the parasite population or if the epidemiological cues correspond to effects on the parasite population. We hypothesized that genomic tools could be used to track population changes in Plasmodium falciparum to detect significant shifts as eradication programs apply interventions. Making use of new whole-genome sequencing data as well as GWAS and other studies, we used SNPs as biological markers for regions associated with drug resistance as well as a set of neutral SNPs to identify individual parasites. By utilizing tools developed as proxy for full genomic sequencing of the human pathogen Plasmodium falciparum, we characterized and tracked parasite populations to test for changes over time and between populations. When applied to markers under selection - those associated with reduced antimalarial drug sensitivity - we were able to track migration of resistance-associated mutations in the population and identify new mutations with potential implications for resistance. Using a population genetic analysis toolbox to study changes in neutral allele frequencies in samples from the field, we found significant population changes over time that included restricted effective population size, reduced complexity of infections, and evidence for both clonal and epidemic propagation of parasites.

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/11108707
Date25 September 2013
CreatorsDaniels, Rachel Fath
ContributorsWirth, Dyann Fergus
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.0021 seconds