Return to search

Roles for Terminal Uridyl Transferases in the Post-Transcriptional Regulation of Developmental miRNAs

MicroRNAs (miRNAs) are a diverse and evolutionarily conserved class of non-coding RNAs that play a multitude of roles in many branches of eukaryotic biology. The regulation of miRNAs is dynamically controlled both spatially and temporally, and the expression of miRNAs can be modulated at the level of transcription or at points downstream of the miRNA maturation process. A relevant example of post-transcriptional miRNA regulation is the blockade of let-7 precursor miRNAs by Lin28 in embryonic stem cells. This pathway, which is initiated by the small RNA-binding protein Lin28, recruits the terminal uridyl transferase (TUTase) Zcchc11 to add a non-templated oligouridine tail to the miRNAs 3' end, and signals it for degradation by the cytoplasmic exonuclease Dis3l2. The Lin28/let-7 axis is essential for development and metabolic homeostasis, and is reactivated in a subset of human cancers. This thesis describes the biochemical mechanism underlying Lin28-mediated degradation of let-7, as well as a novel role for Zcchc11 and the related TUTase Zcchc6 in targeting mature developmental miRNAs in a Lin28-independent manner.

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/11181173
Date10 October 2015
CreatorsThornton, James Edward
ContributorsGregory, Richard Ian
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.002 seconds