On Sea Level - Ice Sheet Interactions

This thesis focuses on the physics of static sea-level changes following variations in the distribution of grounded ice and the influence of these changes on the stability and dynamics of marine ice sheets. Gravitational, deformational and rotational effects associated with changes in grounded ice mass lead to markedly non-uniform spatial patterns of sea-level change. I outline a revised theory for computing post-glacial sea-level predictions and discuss the dominant physical effects that contribute to the patterns of sea-level change associated with surface loading on different timescales. I show, in particular, that a large sea-level fall (rise) occurs in the vicinity of a retreating (advancing) ice sheet on both short and long timescales. I also present an application of the sea-level theory in which I predict the sea-level changes associated with a new model of North American ice sheet evolution and consider the implications of the results for efforts to establish the sources of Meltwater Pulse 1A. These results demonstrate that viscous deformational effects can influence the amplitude of sea-level changes observed at far-field sea-level sites, even when the time window being considered is relatively short (≤ 500 years). / Earth and Planetary Sciences

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/11745718
Date25 February 2014
CreatorsGomez, Natalya Alissa
ContributorsMitrovica, Jerry X.
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.0101 seconds