Return to search

Toward an improved understanding of the global biogeochemical cycle of mercury

Mercury (Hg) is a potent neurotoxin, has both natural and anthropogenic sources to the environment, and is globally dispersed. Humans have been using Hg since antiquity and continue its use in large quantities, mobilizing Hg from stable long-lived geologic reservoirs to actively cycling surface terrestrial and aquatic ecosystems. Human activities, such as mining and coal combustion, have perturbed the natural biogeochemical cycle of Hg. However, the distribution of natural versus anthropogenic Hg in the environment today and the extent of anthropogenic perturbation (i.e., enrichment) are uncertain. Previous model estimates of anthropogenic enrichment have been limited by a lack of information about historical emissions, examined only near-term effects, or have not accounted for the full coupling between biogeochemical reservoirs. Presented here is a framework that integrates recently available historical emission inventories and overcomes these barriers, providing an improved quantitative understanding of global Hg cycling. / Earth and Planetary Sciences

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/12274565
Date06 June 2014
CreatorsAmos, Helen Marie
ContributorsJacob, Daniel James, Sunderland, Elynor M
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.0019 seconds