Return to search

Basal Ganglia Modulation of Cortical Firing Rates in a Behaving Animal

Motor cortex, basal ganglia (BG), and thalamus are anatomically arranged in a recurrent loop whose activity is hypothesized to be involved in the selection of motor actions. Direct (dSPN) and indirect (iSPN) striatal projection neurons receive excitatory input from cortex, and are thought to oppositely modulate cortical activity via BG output to thalamus. Here, we test the central tenets of this model in head-restrained mice performing an operant conditioning task using optogenetic manipulation of dSPNs and iSPNs to determine the effects of activity in each pathway on primary motor cortex. We find that dSPN and iSPN activation has bidirectional, robust, and rapid effects on motor cortex that are highly context-dependent, with distinct effects of each pathway during quiescent and active periods. Thus, the effects of activity in each pathway are at times antagonistic and consistent with classic models, whereas in other behavioral contexts the two pathways will work in the same direction or have no effect at all. In a separate but related project, we describe a direct projection from the globus pallidus externa (GP), a central nucleus of the BG, to frontal regions of the cerebral cortex (FC), which is not typically included in models of BG function. Two cell types make up the GP-FC projection, distinguished by their electrophysiological properties, cortical projection patterns and expression of choline acyteltransferase (ChAT), a genetic marker for the neurotransmitter acetylcholine. These cholinergic GP cells receive basal ganglia input and bidirectionally modulate firing in FC of awake mice. Since GP-FC cells receive dopamine sensitive inhibition from iSPNs and dSPNs, this circuit reveals a pathway by which neuropsychiatric pharmaceuticals can act in the BG and yet modulate frontal cortices. Together, these two projects expand our understanding of the complexities of basal ganglia circuitry and its interactions with cortex.

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/13094354
Date22 October 2014
CreatorsOldenburg, Ian Anton
ContributorsSabatini, Bernardo Luis
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.0018 seconds