Return to search

Time-Dependent Density Functional Theory for Open Quantum Systems and Quantum Computation

First-principles electronic structure theory explains properties of atoms, molecules and solids from underlying physical principles without input from empirical parameters. Time-dependent density functional theory (TDDFT) has emerged as arguably the most widely used first-principles method for describing the time-dependent quantum mechanics of many-electron systems. In this thesis, we will show how the fundamental principles of TDDFT can be extended and applied in two novel directions: The theory of open quantum systems (OQS) and quantum computation (QC). In the first part of this thesis, we prove theorems that establish the foundations of TDDFT for open quantum systems (OQS-TDDFT). OQS-TDDFT allows for a first principles description of non-equilibrium systems, in which the electronic degrees of freedom undergo relaxation and decoherence due to coupling with a thermal environment, such as a vibrational or photon bath. We then discuss properties of functionals in OQS-TDDFT and investigate how these differ from functionals in conventional TDDFT using an exactly solvable model system. Next, we formulate OQS-TDDFT in the linear-response regime, which gives access to environmentally broadened excitation spectra. Lastly, we present a hybrid approach in which TDDFT can be used to construct master equations from first-principles for describing energy transfer in condensed phase systems. In the second part of this thesis, we prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. TDDFT applied to universal Hamiltonians implies that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. This offers the possibility of simplifying computations by using the principles of TDDFT similar to how it is applied in electronic structure theory. Lastly, we discuss a related result; the computational complexity of TDDFT. / Physics

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/9396424
Date10 August 2012
CreatorsTempel, David Gabriel
ContributorsAspuru-Guzik, Alan
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.0019 seconds