Return to search

Effect of Electric Field on Outwardly Propagating Spherical Flame

The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing.
Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect.
The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

Identiferoai:union.ndltd.org:kaust.edu.sa/oai:repository.kaust.edu.sa:10754/273076
Date06 1900
CreatorsMannaa, Ossama
ContributorsChung, Suk Ho, Physical Science and Engineering (PSE) Division, Farooq, Aamir, Roberts, William L.
Source SetsKing Abdullah University of Science and Technology
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Rights2014-12-31, At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis became available to the public after the expiration of the embargo on 2014-12-31.

Page generated in 0.0015 seconds