Return to search

Membrane Materials and Technology for Xylene Isomers Separation and Isomerization via Pervaporation

P-xylene is one of the highly influential commodities in the petrochemical industry. It is used to make 90% of the world’s third largest plastic production, polyethylene terephthalate (PET). With a continuously increasing demand, the current technology’s high energy intensity has become a growing concern. Membrane separation technology is a potential low-energy alternative. Polymeric membranes were investigated in a pervaporation experiment to separate xylene isomers. Polymers of intrinsic microporosity (PIMs) as well as polyimides (PIM-PI), including thermally cross-linked PIM-1, PIM-6FDA-OH and thermally-rearranged PIM-6FDA-OH were investigated as potential candidates. Although they exhibited extremely high permeability to xylenes, selectivity towards p-xylene was poor. This was attributed to the polymers low chemical resistance which was apparent in their strong tendency to swell in xylenes. Consequently, a perfluoro-polymer, Teflon AF 2400, with a high chemical resistance was tested, which resulted in a slightly improved selectivity. A super acid sulfonated perfluoro-polymer (Nafion-H) was used as reactive membrane for xylenes isomerization. The membrane exhibited high catalytic activity, resulting in 19.5% p-xylene yield at 75ᵒC compared to 20% p-xylene yield at 450ᵒC in commercial fixed bed reactors. Nafion-H membrane outperforms the commercial technology with significant energy savings.

Identiferoai:union.ndltd.org:kaust.edu.sa/oai:repository.kaust.edu.sa:10754/336250
Date11 1900
CreatorsBilaus, Rakan
ContributorsPinnau, Ingo, Physical Science and Engineering (PSE) Division, Han, Yu, Peinemann, Klaus-Viktor
Source SetsKing Abdullah University of Science and Technology
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Rights2015-12-01, At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis became available to the public after the expiration of the embargo on 2015-12-01.

Page generated in 0.0022 seconds