Return to search

Design and Implementation of an Extensive Test Facility for Thermoelectric Materials and Devices

A test system was commissioned to characterize commercial thermoelectric modules to be used in the Pizza Oven Waste Energy Recovery (POWER) system for Pizza Pizza restaurants. The objective of this testing was to obtain and classify the thermoelectric material parameters of the Bi2Te3 within commercial thermoelectric generator (TEG) modules. These parameters consisted of the Seebeck coefficient, the thermal conductivity and the electrical resistivity. Together they provide the normalized figure of merit for the thermoelectric material which is a performance indicator for energy efficiency at a given operating temperature. From this research, a two phase methodology was developed that was able to extract the desired values from these modules. Material quality and device composition was first assessed with tools such as SEM and EDS. During this phase, dimensional and elemental data was gathered and a finite element model was constructed to ensure the validity of the primary selected test method for this research which was the Harman technique. The results obtained with this method were all three of the aforementioned thermoelectric parameters as well as a direct measurement of the figure of merit. Thermal and electrical losses for the TEG1B-12610-5.1 module were characterized from room temperature to 200°C using this process. It was determined that the thermal losses were more dominant and could be approximated using a function of T4 to within 1% of their calculated values. This process can be applied to any model of TEG to forecast these losses. To assist with future research, a secondary test method known as the Parallel Thermal Conductance technique was researched and a proposed model of it was designed for use in temperatures up to 300°C. Due to the relatively short test time of the Harman Technique, it was also used to effectively bin incoming groups of TEGs used in the POWER system so that they could be placed strategically in different areas of heat flow based on their measured performance. An increase of 13.2% was observed in the electrical output of the system after the binning had occurred. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/16442
Date11 1900
CreatorsCino, Michael V.
ContributorsPreston, John S., Engineering Physics
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds