Return to search

A Tool For Run Time Soft Error Fault Injection Into FPGA Circuits

Safety and mission critical systems are currently deployed in many different fields where there is a greater presence of high energy particles (e.g.\ aerospace). The use of field programmable gate arrays (FPGAs) within safety critical systems is becoming more prevalent due to the design and cost benefits their use provides. The effects of externally caused faults on these safety critical systems cannot be neglected. In particular, high energy particle striking a circuit can cause a voltage change in the circuit known as a soft error. The effects these soft errors will have on the circuit needs to be understood in order to ensure that the systems will function properly in the event soft errors do occur.

In this thesis a tool is designed to facilitate the run-time injection of soft errors into a hardware circuit running on a FPGA. The tool allows for the control over the number of injections that can be performed and control over the rate that the injections will occur at. Additionally the tool records time stamps of when injections occur and time stamps of when errors are detected. This recorded data allows for the analysis of designs in conditions prone to soft errors.
The implemented tool allows for design time parametrization and run time configuration, allowing a multitude of tests to be run for a single compiled design. The tool also eliminates the need for a host computer after configuration by generating the injection locations and times on the FPGA. Eliminating the host computer allows for faster testing when compared to other methods as data transfer times are greatly reduced.

The implemented tool was run on classical examples of redundant structures, such as duplication with comparison and triple modular redundancy as well as a non-redundant structure to establish a baseline. The results of multiple tests run on each structure are analyzed to illustrate the uses of the tool and how the tool may be used to test other designs. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/16500
Date06 1900
CreatorsZuzarte, Marvin
ContributorsLawford, Mark, Nicolici, Nicola, Software Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0024 seconds