Return to search

Diversity and Evolution of Antibiotic Resistomes

The relentless evolution of antibiotic resistance in pathogens is one of the most pressing medical concerns of the 21st century. Antibiotic resistance and antibiotic drugs originated in environmental bacteria, where they have been integral to their evolution for millions of years. The application of antibiotics in medicine and agriculture has selected for mobilization and dissemination of resistance genes in pathogens. Understanding their evolution here will aid in combating their evolution in pathogens.
This work expands the known mechanistic, functional, and genetic diversity of resistance (i.e. resistomes) in environmental bacteria. I systematically parse the extensively drug-resistant resistome of Paenibacillus sp. LC231, which was sampled from an underground ecosystem spatiotemporally isolated from the surface for over 4 Myr. Paenibacillus sp. LC231 was resistant to 26 of 40 drugs tested. Informatic annotation of resistance genes and functional genomes revealed 18 new resistance elements including five determinants without characterized homologs and three mechanisms not previously known to confer resistance.
I investigated the resistome of Brevibacillus brevis VM4 to study the relationship between species diversity and resistance diversity in the Paenibacillaceae family, which includes Paenibacillus sp. LC231. I found that resistome diversity does not correlate with species diversity, consistent with horizontal transfer of resistance genes.
In each of Paenibacillus sp. LC231 (MphI) and B. brevis VM4 (MphJ), I identified Mphs with unique substrate specifies. I identified the molecular determinants of substrate discrimination in MphI and in doing so, I developed a general strategy for understanding and predicting the functional evolution of resistance enzymes. Together, this work expands the known diversity of resistance that will enable better detection of resistance in pathogens. / Thesis / Doctor of Philosophy (PhD) / Infections caused by antibiotic resistant bacteria are a significant medical problem. Bacteria will always become resistant to antibiotic drugs. Understanding how resistance evolves is essential for increasing the effective lifetime of these drugs. Antibiotics have been naturally produced by bacteria for millions of years, which caused the spread of resistance in environmental bacteria. Medical and agricultural antibiotic use by humans caused resistance in environmental bacteria to transfer to pathogenic bacteria. My work expands the known causes of resistance in environmental bacteria so that we can better detect the causes of resistance in pathogens. In doing so, I demonstrate that multi-drug resistance is over 4 million years old and that environmental bacteria naturally transfer resistance genes. Furthermore, I develop a way to predict the evolution of new resistance functions by inferring their evolutionary histories.

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/22808
Date24 November 2017
CreatorsPawlowski, Andrew
ContributorsWright, Gerard, Biochemistry and Biomedical Sciences
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0021 seconds