Return to search

Plasma Induced Grafting Polymerization of 2-Methacryloyloxyethyl Phosphorycholine Onto Silicone Hydrogels to Reduce Surface Hydrophobicity and Protein Adsorption

Silicone hydrogels haves been widely utilized in many in ophthalmic and other biomedical applications due to the its comfort of hydrogels, their excellent biocompatibility, high oxygen permeability and transparency. For use as a contact lens, the silicone hydrogel with interacts with the tear film, cornea, and eyelid;, thus surface properties of the gel are crucial to be considered. The highly oxygen permeabilitye performance of the silicone hydrogel contact lens materials mainly relies on the incorporationng of the siloxane functional groups., Hhowever these groups are extremely mobile and surface active, which can result in an increase in the of lens surface hydrophobicity, as well as protein and lipid deposition. Therefore, there is a need for surface modification of silicone hydrogel contact lenses. Otherwise users may might have to choose to decrease the frequency and length of wearing duration of silicone contact lenses due to dryness or bio-fouling related issues.

A novel biomimetic methacrylate monomer which contains a phosphorylcholine group, 2-mMethacryloyloxyethyl pPhosphorycholine (MPC) is was grafted onto the surface of novel silicone hydrogel materials surface to create a thick hydration layer in order to enhance the protein resistance and surface wettability. Low temperature air plasma has beenwas chosen to initiate grafting polymerization of MPC monomers onto silicone hydrogel substrates. Hydrogels were treated with plasma and exposed to air flow to yield hydroperoxides on the surface; the, and peroxides group acted as a photo-initiators for further thermal MPC grafting polymerization.

After surface modification, the silicone hydrogels were characterized by XPS and ATR-FTIR to confirm the structure and elemental composition. A significant amount of phosphorus element was found shown on the XPS spectra of the modified materialsum,, demonstrating that so the MPC monomers were successfully grafted onto the gel surface. According to water contact measurement results, the modified samples possessed very hydrophilic surfaces, with advancing angles of about 27°, while compared the unmodified samples at around 110°. After surface grafting, between a around 20% and to 50%’s reduction in protein deposition was also observed, which aligned with water contact angle results. Other properties such as oxygen permeability, transparency, water equilibrium, and elastic modulus remained unchanged after the air plasma exposure and thermal MPC polymerization. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/24191
Date04 1900
CreatorsDong, Zhaowen
ContributorsSheardown, Heather, Biomedical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds