Return to search

Development of Robust Biofunctional Interfaces for Applications in Selfcleaning Surfaces, Lab-Ona-Chip Systems, and Diagnostics

Biofunctional interfaces capable of anchoring biomolecules and nanoparticles of interest onto a platform are the key components of many biomedical assays, clinical pathologies, as well as antibacterial and antiviral surfaces. In an ideal biofunctional surface, bio-entities and particles are covalently immobilized on a substrate in order to provide robustness and long-term stability. Nonetheless, most of the reported covalent immobilization strategies incorporate complex wet-chemical steps and long incubation times hindering their implementation for mass production and commercialization. Another essential factor in the biointerface preparation, specially with regard to biosensors and diagnostic applications, is utilization of an efficient and durable blocking agent that can inhibit non-specific adsorption of biomolecules thereby enhancing the sensitivity of sensors by diminishing the level of background noise. Many of the commonly used blocking agents lack proper prevention of non-specific adsorption in complex fluids. In addition, most of these agents are physically attached to surfaces making them unreliable for long-term usage in harsh environments (i.e. where shear stresses above 50 dyn/cm2 or strong washing buffers are involved).
This thesis presents novel and versatile strategies to covalently immobilize nanoparticles and biomolecules on substrates. The new surface coating techniques are first implemented for robust attachment of TiO2 nanoparticles onto ceramic tiles providing self-cleaning properties. Further, we utilize similar strategies to covalently immobilize proteins and culture cells in microfluidic channels either as a full surface coating or as micropatterns of interest. The new strategies allow us to obtain adhesion of ~ 400 cells/mm2 in microfluidic channels after only 1-day incubation, which is not achievable by the conventional methods. Moreover, we show the possibility of covalently micropatterning of biomolecules on lubricant-infused surfaces (LISs) so as to attain a new class of biofunctional LISs. By integration of these surfaces into a biosensing platform, we are able to detect interleukin 6 (IL-6) in a complex biofluid of human whole plasma with a limit of detection (LOD) of 0.5 pg.mL-1. This LOD is significantly lower than the smallest reported IL-6 LOD in plasma, 23 pg mL-1, using a complex electrochemical system. The higher sensitivity of our developed biosensor can be attributed to the distinguish capability of biofunctional LISs in preventing non-specific adhesion of biomolecules compared to other blocking agents. / Thesis / Doctor of Philosophy (PhD) / The key goal of this thesis is to provide new strategies for preparation of robust and durable biointerfaces that could be employed for many biomedical devices such as self-cleaning coatings, microfluidics, point-of-care diagnostics, biomedical assays, and biosensors in order to enhance their efficiency, sensitivity, and precision. The introduced surface biofunctionalization methods are straightforward to use and do not require multiple wet-chemistry steps and incubation times, making them suitable for mass production and high throughput demands. Moreover, the introduced surface coating strategies allow for creation of antibody/protein micro-patterns covalently bound onto a biomolecule-repellent surface. The repellent property of the surfaces is resulted from infusion of an FDA-approved lubricant into the surface of a chemically modified substrate. While the surface repellency can effectively prevent non-specific adhesion of biomolecules, the patterned antibodies can locally capture the desired analyte, making them a great candidate for biosensing.

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/26035
Date January 2020
CreatorsShakeri, Amid
ContributorsDidar, Tohid, Mechanical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0015 seconds