Return to search

Development of a Modified Anthropomorphic Test Device for the Quantification of Behind Shield Blunt Impacts / Quantification of Loading for Behind Shield Blunt Impacts

Ballistic shields are used by defense teams in dangerous situations as protection against threats such as gunfire. When a ballistic shield is struck, the shield material will deform to absorb the kinetic energy of the incoming projectile. The rapid back-face deformation of the shield can contact the arm, which can impart a large force over an extremely short duration. This work modified an Anthropomorphic Test Device (ATD) to be used for the characterization of behind ballistic shield blunt impact loading profiles.

The modified ATD was instrumented to measure impacts at the hand, wrist, forearm, and elbow to compare the force transfer at different locations of impact. A custom jig was designed to support the ATD behind a ballistic shield, provide a high degree of adjustability, and be subjected to impact testing. Two ballistic shield models, both with the same protection rating, were tested and showed to have statistically different responses to the same impact conditions, indicating further need for shield safety evaluation.

To apply these loading profiles to future injury criteria development tests, a pneumatic impacting apparatus was re-designed that will allow the high energy impact profiles to be re-created in the McMaster Injury Biomechanics lab. Understanding the ballistic impact conditions, as well as the response of different ballistic shield models provided insight into the possible methods available to reduce upper extremity injury risk. This work has provided essential data for informing a future standard for shield safety evaluation. / Thesis / Master of Applied Science (MASc) / When a ballistic shield is impacted by a bullet it deforms to absorb the incoming energy. The high-speed deformation of the shield material can impact the arm leading to fracture and possible life-threatening risks if the shield is dropped due to this injury. At the time of this work, there were no standards that limited the amount of allowable back-face deflection or tools available that could measure the force transferred to the arm in this scenario.

The purpose of this work was to develop a measurement device that could measure the force transferred to the arm from the behind shield impact. An existing crash test dummy arm was modified to provide measurement capabilities for this loading scenario. Ballistic shield testing was conducted where two different ballistic shield models were impacted to observe how the impact force changed with shield design, as well as the distance the device was placed behind the shield. A pneumatic impacting apparatus was then re-designed in the McMaster Injury Biomechanics lab that will allow the ballistic impact conditions to be re-created for evaluating the injury tolerance of the arm. The results of this work will be used to inform the future development of a ballistic shield evaluation standard.

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/26038
Date January 2020
CreatorsSteinmann, Noah
ContributorsQuenneville, Cheryl, Mechanical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0024 seconds