Return to search

The application of metabolomics in assessment of nutrition, sources of variation in food-related metabolites, and identification of -omics features of childhood obesity

Ideally, a nutritional biomarker serves as an objective measure of the intake of a particular food or nutrient, may provide a reflection of health and disease processes, and can aid in the development of personalized nutritional recommendations. However, few food biomarkers have been validated and most have yet to be critically appraised in the literature. With the increased use of metabolomics in population-based studies, it is important to identify the sources of variability in nutritional biomarkers that may be attributed to intrinsic physiologic characteristics and extrinsic factors so that exposure-outcome associations can be examined more accurately. Additionally, circulating metabolites are associated with obesity-related changes in gut microbiome but there has been limited integration of metabolomics with microbiome in childhood obesity, and even less is known in non-white populations. This dissertation presents a series of studies that provide direct support for utility of nutritional biomarkers in population-based studies. The first study, presented in Chapter 2, contributes to the growing literature on food-based biomarkers by generating a comprehensive list of metabolites associated with a comprehensive list of all individual foods and food groups, and rated the evidence based on interstudy repeatability and study design. Chapter 3 identifies sources of variability in serum metabolite concentrations in White Europeans and South Asian pregnant women, thereby guiding appropriate statistical modeling when utilizing metabolomics in nutritional epidemiological studies. Chapter 4 provides results from a multi-omics integration analysis of serum metabolites and amplicon sequence variants of 16S ribosomal RNA genes to identify biomarkers that discriminate children with and without obesity. Collectively, the results showed that a specific food/food group may give rise to many metabolites, however in several cases, a single metabolite can be a good indicator of food intake. Dietary factors explained the highest proportion of variability in exogenous food-based biomarkers relative to non-dietary factors, whereas the contribution of non-dietary factors was either similar or lower for metabolites that can either be produced endogenously, biotransformed by gut microbiota, and/or derived from more than one food source. Most of the circulating metabolites differed by ethnicity (South Asian and White Europeans). Biomarkers with good evidence can be considered direct surrogates for food intake, however, they can be influenced by several non-dietary factors, which require appropriate consideration during the statistical analyses of the data. Finally, the results showed notable differences in serum metabolome and specific gut bacterial species, and between specific metabolites and bacterial species related to childhood obesity. Obesity related metabolic pathways such as glutamate and carnitine metabolism may provide insight into the metabolic processes related to early onset of obesity in childhood. / Dissertation / Doctor of Philosophy (Medical Science)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/28251
Date January 2022
CreatorsRafiq, Talha
ContributorsTeo, Koon, Medical Sciences (Division of Physiology/Pharmacology)
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0428 seconds