<p>p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times; color: #3a3a3a} p.p2 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times; color: #242424} span.s1 {color: #242424} span.s2 {color: #4e4e4e} span.s3 {color: #3a3a3a} span.s4 {color: #606060}</p> <p>With a long-term view to developing bioactive paper that can detect pathogens both in the laboratory and in the field, it is important to understand whether wet-strength papers are suitable supports for antibodies. This thesis describes the influence of polyamide-epichlorohydrin (PAE) and polyvinylamine (PVAm), which are typical wet-strength resins, on antibody activity. Two kinds of antibodies were employed: conventional Anti-Rabbit IgG (AR-Ab, whole molecules) and engineered anti-So aureus single domain antibody with cellulose binding domain (CBM-Ab). The results of the activity studies surprisingly showed that the typical loadings of reactive, cationic wet-strength polymers, used to strengthen wet paper, did not interfere with the antibody assays. However, higher content of wet-strength resins impeded the function of antibody. Also, conventional AR-Ab adsorbed very well and retained its functionality on paper surface without the aid of cellulose binding domain. A preliminary study was also performed to investigate the effect of alkylketene dimer (AKD), as a sizing agent, on AR-Ab activity. The results in the early stage revealed that AR-Ab functioned better on AKD-treated papers than on original paper.</p> / Master of Applied Science (MASc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/9101 |
Date | 08 1900 |
Creators | Wang, Jingyun |
Contributors | Pelton, Robert H., Filipe, Carlos, Chemical Engineering |
Source Sets | McMaster University |
Detected Language | English |
Type | thesis |
Page generated in 0.0019 seconds