Return to search

Enzyme Behavior in Synthetic Materials and Structural Implications for Rational Design

Combining enzymes with synthetic materials is the new frontier of biocatalysis, materials science, and protein engineering. Enzymes are biological macromolecule catalysts with incredible efficiency and specificity that are desirable for use in a variety of different fields. However, commercial applications have been limited by the stability and reusability of un-altered enzymes. An avenue for overcoming the challenges to harnessing enzyme power is to combine enzymes with materials to create an enzymatically-active material that has enhanced stability and activity. Unfortunately, the catalytic activity of the hybrid material is often lower than that of the enzyme alone. The activity of an enzyme is directly dependent on its structure and dynamics. Therefore, a deeper understanding of enzyme structure and dynamics upon incorporation into materials will provide the data necessary to rationally design enzymatically-active materials with the desired features.
This dissertation explores the behavior of a model enzyme, T4 Lysozyme, with two different artificial material systems, metal-organic frameworks and polyethylene glycol. The underlying structural rationale for the behavior is probed using a variety of techniques, notably, Electron Spin Paramagnetic Resonance. Herein, the implications of structural alterations on activity and opportunities for exploitation are discussed. T4 Lysozyme is a perfect model for this study because it has a well characterized structure-activity relationship, thus providing a vast literature understanding which can be pulled from to verify and assist with interpretation of data.
The structural basis of enzyme activity alteration in artificial materials can be used to rationally design systems with desired characteristics. After successfully demonstrating the tunability of proteins in artificial materials using T4L as a model, human Cu/Zn superoxide dismutase 1 was chosen for continuing studies due to its importance in diseased states. However, the superoxide dismutase mutant chosen is aggregation prone, which makes it difficult to express recombinantly in large amounts. Therefore, an efficient protocol for producing the superoxide dismutase protein was developed to set the stage for future studies.

Identiferoai:union.ndltd.org:ndsu.edu/oai:library.ndsu.edu:10365/32330
Date January 2020
CreatorsFarmakes, Jasmin Kaye
PublisherNorth Dakota State University
Source SetsNorth Dakota State University
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf
RightsNDSU policy 190.6.2, https://www.ndsu.edu/fileadmin/policy/190.pdf

Page generated in 0.0028 seconds