Return to search

Development of a seamless morphing wing

Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2010. / The Cape Peninsula University of Technology (CPUT) Advanced Manufacturing and
Technology Laboratory (AMTL) developed an Unmanned Aerial Vehicle (UAV)
Technology Demonstrator for the purpose of testing and maturing adaptronic
devices. Extending the flight envelope of this unmanned aerial vehicle by increasing
its range and endurance is the next step in its development. A seamless variable
angle of incidence (sVAI) morphing wing is proposed to increase the lift with little
coupling to drag during takeoff; and decrease the drag with little effect on lift during
climb, thus increasing the total flight performance of the aircraft. CAD models of the
conceptualized sVAI wing and a conventional (CON) wing, as used on the
Technology Demonstrator, were modeled. Numerical analyses on these CAD models
showed that the sVAI wing concept at a 4° twist decreased the ground roll distance
and stall velocity by ±17% and ±31% respectively, as compared to the CON wing in
standard takeoff configuration. This allowed for ± 11.7% less power required for
takeoff allowing the aircraft to get to its operational altitude quicker, thus saving fuel
and reducing energy losses; and increasing range and endurance. The results also
showed that the sVAI wing concept could reduce the drag during climb by ± 14%,
but the lift is also proportionately reduced thus having little improvement on the
climb phase of flight performance. A prototype of the morphing wing was then
conceptualized and designed, using a 3D CADmodeler, and then manufactured. The
product development chain produced for this morphing wing included two rapid
prototyping machines and reverse engineering technologies. The chain allowed for
the rapid manufacturing of light weight and intricate parts. The manufactured wing is
then incorporated into a test rig to compare the actual morphing ability of the
prototype to the theoretical morphing ability of the CADmodel, and thus make flight
performance predictions of the actual vehicle. 3D scans were taken of the prototype
and then converted to 3D CADfiles. The geometrical and topographical deformation
of the prototype was then compared to that of the CAD model showing an average difference of ±1.2% and ±3% at maximum positive and negative configurations,
respectively. This allowed one to make the prediction that the sVAI wing will increase
the performance of the Technology Demonstrator.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:cput/oai:localhost:20.500.11838/2230
Date January 2010
CreatorsPetersen, Michael
ContributorsPhilander, Oscar, Cape Peninsula University of Technology. Faculty of Engineering. Department of Mechanical Engineering.
PublisherCape Peninsula University of Technology
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageEnglish
TypeThesis
Rightshttp://creativecommons.org/licenses/by-nc-sa/3.0/za/

Page generated in 0.0018 seconds