Return to search

Biological activities of medicinal plants traditionally used to treat Septicaemia in the Eastern Cape, South Africa

Over the past 25 years, there has been a resurgence of worldwide scientific research in the fields of ethnopharmacology. The Western world has acknowledged the continued use of traditional medicines by the majority of third world countries, and the need for novel drug development. Hence, much of the pharmaceutical research in recent years has focused on the ethnobotanical approach to drug discovery (Light et al., 2005). In South Africa, as in most developing parts of the world, traditional herbal medicine still forms the backbone of rural healthcare. The government health services in South Africa provide only western medical care although the majority of the population consult traditional healers for some or all of their healthcare needs (McGaw et al., 2005). Medicinal plants like Harpephyllum caffrum are used as blood purifiers or emetics (Watt and Breyer-Brandwijk, 1962), and also for treating acne and eczema. The antimicrobial activity of this plant can be used to treat septicaemia, which is ranked the sixth leading cause of death among neonates and the eighth leading cause of death for infants through the first year of life (Heron, 2007). In this study, the plants investigated for antimicrobial activity were Harpephyllum caffrum, Hermannia cuneifolia, Chironia baccifera, Rhigozum obovatum, Felicia muricata and Pentzia incana. These plants were tested against ATTC (American Type Culture Collection) strains and microorganisms isolated from clinical isolates of patients suffering from septicaemia. The assay methods used included the agar diffusion method using the Mast multipoint inoculator, the microtitre dilution method were used to determine the minimum inhibitory concentration, thin layer chromatography fingerprints accompanied by bioautographic assay were used to detect the inhibition of bacterial growth by active compounds separated from plant extracts and the Ames test was required to assess the possibility of bacterial mutagenesis upon the exposure to plant extracts which can lead to carcinogenicity. In agar diffusion method, extracts of Harpephyllum caffrum inhibited nine strains of Candida albicans, three species of Acinetobacter and four strains of E.faecalis. Extracts of Hermannia cuneifolia inhibited four strains of B.cereus and three strains of Staphylococcus aureus. Extracts of Chironia baccifera inhibited one strain of Acinetobacter and five strains of E.faecalis. Extracts of plants Rhigozum obovatum, Felicia muricata, and Pentzia incana showed no antimicrobial activity. In the microtitre dilution method used to determine the minimum inhibitory concentration (MIC), the results were different from the agar diffusion method. More activity was observed. Extracts of Harpephyllum caffrum inhibited three strains of E.coli, six strains of S.aureus, three species of Acinetobacter and one strain of Klebsiella pneumonia. Extracts of Hermannia cuneifolia inhibited four strains of B.cereus, three strains of S.aureus, two strains of K.oxytoca and one species of Acinetobacter. Extracts of Chironia baccifera inhibited three strains of S.aureus, one strain of MRSA, one species of Acinetobacter and one strain of S.haemolyticus. The MIC values ranged from 0.049 to 6.25mg/ml. Using the thin layer chromatography fingerprints, bioautography showed the presence of various inhibitory chemical compounds. Methanol and acetone extracts of Harpephyllum caffrum, separated very well and showed various inhibition zones on exposure to Candida albicans, Enterococcus faecalis and Staphylococcus aureus. The different inhibition zones were recorded as Rf In the Ames test (Maron and Ames, 1983) the methanol and acetone extracts of Harpephyllum caffrum and Hermannia cuneifolia were negative which means they were devoid of any mutagenic properties. Methanol extracts of Harpephyllum caffrum showed similar results in the Ames assay as reported by Verschaeve and Van Staden (2008). values ranging from 0.25 to 0.95. The zones indicate the different inhibiting chemical compounds present in the plant. Petroleum ether, ethyl acetate, chloroform and formic acid were the solvents used in the assay in the ratio 8:7:5:1, respectively. Establishing the antimicrobial activity of these plants contribute to the systematic scientific investigation of indigenous South African medicinal plants.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10119
Date January 2009
CreatorsChinyama, Robert Fred
PublisherNelson Mandela Metropolitan University, Faculty of Health Sciences
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MTech
Formatxiii, 117 leaves, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.0019 seconds