Return to search

Collaborative research with traditional African health practitioners of the Nelson Mandela Metropole : antimicrobial, anticancer and anti-diabetic activities of five medicinal plants

The promotion and development of indigenous knowledge pertaining to the traditional African healing system is one of the prime objectives set out by the South African government. Despite excellent research opportunities and funding, the biggest problem with ethnopharmacological research is a lack of interaction with indigenous communities, which tends to dilute the benefits this research has to offer these communities. The primary aim of this study was thus to promote the traditional African healing system through collaborative medicinal plant research with local traditional health practitioners. The research collaboration aimed to validate some biological activities of traditional remedies used by collaborating traditional health practitioners and ensured interactive sessions where scientific literature, research practices, findings and relevant legislation were discussed and debated. The joint development of a medicinal garden was a valuable tool in realising these goals. Aqueous and ethanol extracts of Bulbine frutescens, Ornithogalum longibracteatum, Ruta graveolens, Tarchonanthus camphoratus and Tulbaghia violacea were selected for antimicrobial, anticancer and anti-diabetic screening, because of their sustainable utilisation potential. The ethanol extract of T. violacea produced the best antimicrobial activity on Bacillus subtilis (100% growth inhibition) and Candida albicans (89% growth inhibition) at 250 μg/ml. The EC50 for the ethanol extract of T. violacea against HT29 colon cancer cells was 101 μg/ml. The aqueous extracts of B. frutescens and T. camphoratus (0.5 and 50 μg/ml) produced the highest overall glucose uptake activity in Chang liver and C2C12 muscle cells. T. camphoratus was unanimously chosen by participating practitioners as the plant to be investigated further. The aqueous extract of T. camphoratus increased glucose uptake in C2C12 muscle cells through increased translocation of GLUT4 to the plasma membrane and activation of the PI3-kinase and AMP-kinase pathways. It produced some alpha-glucosidase inhibitory activity at concentrations of ≥ 200 μg/ml. Apart from interactive feedback seminars at which the findings were presented to participating practitioners, all scientific literature regarding the plants was summarised, translated, compiled and given to participating practitioners in written format. An indigenous knowledge agreement has been negotiated and will formalise the collaboration in future. It is recommended that future research focuses on plants with economic development potential that can be cultivated in the medicinal garden.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10148
Date January 2007
CreatorsVan Huyssteen, Mea
PublisherNelson Mandela Metropolitan University, Faculty of Health Sciences
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Doctoral, PhD
Formatxxxi, 255 leaves, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.0023 seconds