Return to search

Macrophyte distribution and responses to drought in the St Lucia Estuary

This study investigated the response of the macrophytes in St Lucia Estuary, northern KwaZulu-Natal to drought. The present distribution of vegetation (2010 / 2011) was mapped and changes over time recorded from past aerial photographs. The changes in macrophyte cover in response to environmental factors (sediment and groundwater characteristics) was measured along four transects in 2010 and compared with results from previous years, in 2005 and 2006. In the current study, 1960 images were digitized to illustrate macrophyte distribution and cover of the Narrows, Makakatana and the Eastern Shores during a low rainfall period which started in 1958. The 2001 images were digitized to illustrate vegetation distribution and cover of the same area prior to the current drought which started in June/ July 2002. The 2008 images were digitized to illustrate vegetation distribution and cover of estuarine vegetation within the floodplain during the drought (after 6 years). The sites were visited in June 2011 for verification of the distribution and boundaries of each macrophyte habitat. The area covered by the water column varied over time. In 1960 during a low rainfall period the water was 32705 ha, 33320 ha in 2001 and reduced to 30443 ha in 2008. The area cover of inundated and dry reeds fluctuated with the water level. Under high water levels, low-lying areas such as Fanies Island and Selley‟s Lake were flooded and under low water levels, intertidal sand and mudflats were exposed and colonised by succulent salt marsh (Sarcocornia spp. and Salicornia meyeriana). Similar conditions were observed at Makakatana. Mangroves were observed from the mouth to the Forks. Avicennia marina was the dominant mangrove species and primary colonizer of dredge spoil. The area cover of mangroves in the vicinity of the mouth fluctuated as a result of fluctuating water levels, dredging operations, excavation of the Back Channel and Cyclone Gamede which killed intertidal vegetation. Between 2001 and 2008, mangrove expansion was faster in the Mfolozi Swamps area (± 1.4 ha yr -1) compared to the Narrows (± 0.4 ha yr -1). Long term monitoring transects were set up in 2005, at Makakatana, Charters Creek, Catalina Bay and at Listers Point to document changes in sediment conditions and vegetation cover. These were sampled in July 2005, October 2005, February 2006 and May 2010. Silt was the dominant particle size at Catalina Bay, Charters Creek and Makakatana. At Makakatana, average ground water salinity was 17.2 ± 6.6 ppt, 4.1± 4.9 ppt at Catalina Bay and 32.9 ± 19.3 ppt at Charters Creek. Drought resulted in the accumulation of salt on the surface sediment layer at Listers Point and Charters Creek due to low rainfall. Listers Point, the site with the lowest freshwater input and habitat diversity had the lowest macrophyte species richness with only three species. The dominant species at this site were Sporobolus virginicus and Chenopodium album L. which are highly salt tolerant species. Catalina Bay had the highest species richness (18 to 27); as a result of freshwater input via groundwater seepage from the sand dune aquifers on the Eastern Shores. Along the Eastern Shores, vegetation was dominated by species of Cyperaceae, Juncaceae and Juncaginaceae. Fluctuations in groundwater depth were observed at all sites, Listers Point groundwater depth in February 2006 was 80 cm and the ground water level was not reached during the May 2010 field trip. During the May 2010 field trip, the water column salinity of the St Lucia system was highly variable, Makakatana had the lowest water column salinity of 7.1 ppt, 42.1 ppt at Catalina Bay, 44 ppt at Charters Creek and Listers Point had the highest water column salinity of 95 ppt. An assessment of the changes in macrophyte cover along the transects showed that cover fluctuated in response to rainfall, water level and drought. At Listers Point, there was a continuous decline in the abundance of Sporobolus virginicus over time which was sparsely distributed in the first 40 m of the transect. Sarcocornia natalensis, a succulent and obligate halophyte, was recorded, in areas with high sediment conductivity. In May 2010, bare ground increased to an average percentage cover of 96.5% and was covered with dead organic matter and a salt crust at Listers Point. At Makakatana, there was a significant decrease in bare ground from July 2005 to May 2010 (H = 24.58, N = 197, p<0.001) as bare areas were colonized by salt marsh. Multivariate analysis showed that the abundance of Sporobolus virginicus was positively influenced by sediment moisture content and Paspalum vaginatum abundance was strongly influenced by the water column salinity. At Catalina Bay, low sediment conductivity at the groundwater seepage area resulted in terrestrial vegetation encroaching on estuarine vegetation. Sarcocornia natalensis became more abundant towards the water column. During the period of study, species richness at St Lucia ranged from 2 (Listers Point, May 2010) to 27 (Catalina Bay, February 2006). Salinity and water level fluctuation have a significant impact on the distribution of macrophytes at St Lucia during the drought. In saline areas salt marsh plants have colonized exposed shorelines and along the Eastern Shores groundwater seepage has increased macrophyte species richness. Low water levels have resulted in the exposure and desiccation of submerged macrophytes, which are replaced by macroalgae.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10632
Date January 2012
CreatorsNondoda, Sibulele Phefumlela
PublisherNelson Mandela Metropolitan University, Faculty of Science
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MSc
Formatix, 144 leaves, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.0022 seconds