In the last 50 years microelectronics have advanced at an exponential rate, causing microelectronic devices to shrink, have very low operating voltages and increased complexities; all this has made circuits more sensitive to various kinds of failures. These trends allowed soft errors, which up until recently was just a concern for space application, to become a major source of system failures of electronic products. The aim of this research paper was to investigate different mitigation techniques that prevent these soft errors in a Video Graphics Array (VGA) controller which is commonly used in projecting images captured by cameras. This controller was implemented on a Flash Based Field Programmable Gate array (FPGA). A test set-up was designed and implemented at NRF iThemba LABS, which was used to conduct the experiments necessary to evaluate the effectiveness of different mitigation techniques. The set-up was capable of handling multiple Device Under Tests (DUT) and had the ability to change the angle of incidence of each DUT. The DUTs were radiated with a 66MeV proton beam while the monitoring equipment observed any errors that had occurred. The results obtained indicated that all the implemented mitigation techniques tested on the VGA system improved the system’s capability of mitigating Single Event Upsets (SEU). The most effective mitigation technique was the OR-AND Multiplexer Single Event Transient (SET) filter technique. It was thus shown that mitigation techniques are viable options to prevent SEU in a VGA controller. The permanent SEU testing set-up which was designed and manufactured and was used to conduct the experiments, proved to be a practical option for further microelectronics testing at iThemba LABS.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:27083 |
Date | January 2015 |
Creators | Potgieter, Juan-Pierre |
Publisher | Nelson Mandela Metropolitan University, Faculty of Engineering, the Built Environment and Information Technology |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis, Masters, MEngineering |
Format | xiii, 123 leaves, pdf |
Rights | Nelson Mandela Metropolitan University |
Page generated in 0.0017 seconds