Return to search

Tool wear monitoring in end milling of mould steel using acoustic emission

Today’s production industry is faced with the challenge of maximising its resources and productivity. Tool condition monitoring (TCM) is an important diagnostic tool and if integrated in manufacturing, machining efficiency will increase as a result of reducing downtime resulting from tool failures by intensive wear. The research work presented in the study highlights the principles in tool condition monitoring and identifies acoustic emission (AE) as a reliable sensing technique for the detection of wear conditions. It reviews the importance of acoustic emission as an efficient technique and proposes a TCM model for the prediction of tool wear. The study presents a TCM framework to monitor an end-milling operation of H13 tool steel at different cutting speeds and feed rates. For this, three industrial acoustic sensors were positioned on the workpiece. The framework identifies a feature selection, extraction and conditioning process and classifies AE signals using an artificial neural network algorithm to create an autonomous system. It concludes by recognizing the mean and rms features as viable features in the identification of tool state and observes that chip coloration provides direct correlation to the temperature of machining as well as tool condition. This proposed model is aimed at creating a timing schedule for tool change in industries. This model ultimately links the rate of wear formation to characteristic AE features.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:9651
CreatorsOlufayo, Oluwole Ayodeji
PublisherNelson Mandela Metropolitan University, Faculty of Engineering, the Built Environment and Information Technology
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MEngineering
Formatxvi, 130 leaves, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.0022 seconds