Return to search

A bioinorganic study of some cobalt(II) Schiff base complexes of variously substituted hydroxybenzaldimines

Syntheses of Schiff bases were carried out by reacting salicylaldyhde, ortho-vanillin, para-vanillin or vanillin with aniline, 1-aminonaphthalene, 4- and 3-aminopyridine, and also with 2- and 3-aminomethylpyridine. The various Schiff bases obtained from the condensation reaction were reacted with CoCl₂.6H₂0, triethylamine stripped CoCl₂.6H₂0 or Co(CH₃COO)₂ to form cobalt(Il) complexes of ratio 2:1. The complexes obtained from cobalt chloride designated as the "A series" are of the general formulae ML₂X₂.nH₂0 , (L = Schiff base, X = chlorine) while those obtained from cobalt acetate or triethylamine stripped cobalt chloride denoted as "B" and C" are of the general formulae ML₂. nH₂0. The few complexes that do not follow the general formulae highlighted above are: IA [M(HL)₃.Cl₂], (L = N-phenylsalicylaldimine), 4A = (MLCl₂), (L = N-phenylvanaldiminato), 7 A and 21 A (ML₂), (L = N-naphthyl-o-vanaldiminato, and N-methy-2-pyridylsalicylaldiminato respectively), 8A = MLCI, (L = N-naphthylvanaldiminato), 12A = M₂L₃Cl₂, (L = N-4-pyridylvanaldiminato), 15A (MLCI), (L = N-3-pyridyl-o-vanaldiminato). The ligands and their complexes were characterized using elemental analyses and cobalt analysis using ICP, FT-IR spectroscopy (mid and far-IR), NIR-UV/vis (diffuse reflectance), UV/vis in an aprotic and a protic solvents, while mass spectrometry, ¹HNMR and ¹³CNMR, was used to further characterized the ligands. The tautomeric nature of the Schiff bases were determined by examining the behaviour of Schiff bases and their complexes in a protic (e.g. MeOH) and non-protic (e.g. DMF) polar solvents. The effects of solvents on the electronic behaviour of the compounds were also examined. Using CDCl₃, the NMR technique was further used to confirm the structures of the Schiff bases. The tentative geometry of the complexes was determined using the spectra information obtained from the far infrared and the diffuse reflectance spectroscopy. With few exceptions, most of the "A" series are tetrahedral or distorted tetrahedral, while the "B + C" are octahedral or pseudooctahedral. A small number of complexes are assigned square-planar geometry owing to the characteristic spectral behaviour shown. In order to determine their biological activity, two biological assay methods (antimicrobial testing and brine shrimp lethality assay) were used. Using disc method, the bacteriostatic and fungicidal activities of the various Schiff bases and their respective complexes to Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa as well as Aspergillus niger, were measured and the average inhibition zones are tabulated and analysed. Both the Schiff bases and their complexes showed varying bacteriostatic and fungicidal activity against the bacteria and fungus tested. The inhibition activity is concentration dependent and potential antibiotic and fungicides are identified. To determine the toxicity of the ligands and their corresponding cobalt(II) complexes, brine shrimp lethality assay was used. The LD₅₀ of the tested compounds were calculated and the results obtained were tabulated for comparison.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:rhodes/vital:4394
Date January 2008
CreatorsShaibu, Rafiu Olarewaju
PublisherRhodes University, Faculty of Science, Chemistry
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Doctoral, PhD
Format288 leaves, pdf
RightsShaibu, Rafiu Olarewaju

Page generated in 0.0022 seconds