Return to search

Soil factors affecting glyphosate efficacy in Lolium SPP.

Thesis (MScAgric)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Glyphosate remains an important herbicide in weed control. This is due to several positive
attributes it has including sytemicity, wide spectrum of weed control and environmental
friendliness. Its efficacy and lack of residual activity are therefore important to ensure
adequate weed control without imposing hazards to the environment. Despite these favourable
attributes for weed control glyphosate has its shortcomings.
Evolution of resistance to glyphosate has been a major concern from 1996. However,
there are other factors that reduce the maximum potential of glyphosate. Any factors that
reduce glyphosate efficacy may result in the target plant being subjected to non-lethal
concentrations of glyphosate. This in turn may predispose the plants to developing herbicide
resistance. Some factors that may influence efficacy of glyphosate, and therefore be possibly
selecting for resistance were investigated in this study.
Although glyphosate is a postemergence herbicide, its efficacy is not exempt from the
effect of soil and nutrients in which the weeds occur. The possibility of this occurring was
investigated in a greenhouse study on ryegrass (Lolium spp.) In this study ryegrass was grown
in three soils: pure sand (SS), soil from pasture paddock (PS) and soil from crop field (CS).
The soils varied in nutrient composition and, although all were classified as sand, they had
varying proportions of sand, loam and clay. This investigation consisted of four experiments.
The first experiment was investigating the effect of growing a susceptible commercial
ryegrass cultivar on PS, CS and SS soils on the efficacy of glyphosate (360 g a.i. L-1
formulation) applied at five glyphosate application rates (GAR). The GARs were 0 (0x), 67.5
(1/8x), 135 (1/4x), 270 (1/2x) and 540 (1x) g a.i. ha-1. The second experiment investigated the
effect of growing a susceptible commercial ryegrass cultivar and a glyphosate resistant
ryegrass biotype on PS and CS soils on the efficacy of glyphosate. The application rates were
0 (0x), 270 (1/2x), 540 (1x), 1080 (2x) and 2160 (4x) g a.i. ha-1. The third and the fourth
experiments were similar to the first experiment except: The latter investigated the role of
nutrient content of irrigation water (pure water or balanced nutrient solution) and; the former
investigated the effect of soil activity (by covering the soil surface with cotton at the time of
spraying) of glyphosate with regard to the role it plays on efficacy of glyphosate. Our findings
showed that: i) soil affects the efficacy of glyphosate with more control (19% survivors) found in the PS soil compared to 50% and 62% survivors in CS and SS soils respectively, this effect
may be dependent upon the species resistance as; ii) the effect in the resistant ryegrass biotype
was reversed with about 95% of survivors in the PS soil compared to about 78% in CS soil;
iii) efficacy of glyphosate is influenced by the soil nutrient status and the nutrient content of
the irrigation water. This was shown by decrease in the control of ryegrass (100% survivors)
grown in SS soil when fed with pure water compared to 45% when nutrient fed. In PS soil
there was no significant effect. This was probably due to inherently higher nutrient content of
the PS soil; and iv) glyphosate efficacy is influenced by the amount of glyphosate reaching the
soil (absorbed through the roots). This was shown in PS soil where 1/8x GAR resulted in
93.3% survivors in covered soil compared to 60% in uncovered soil. A similar trend was also
observed at 1/4x GAR. An opposite effect was shown in SS soil with 0% and 40% survival at
1/4x GAR in the covered and uncovered soil respectively.
Glyphosate has been hailed as an environmentally friendly herbicide as it rapidly
degrades in soil and it sorbs on metals embedded in soil matrix. However, reports in the
literature have showed reduction in crop yield due to soil glyphosate residues. In these studies,
glyphosate phytotoxicity was found to be dependent on certain soil characteristics and nutrient
content. Following this, a greenhouse study was conducted to assess the phytotoxic activity of
glyphosate on a susceptible commercial ryegrass cultivar grown in PS, CS and SS soils.
Glyphosate was applied at 0 (G1), 540 (G2) and 3240 (G3) g a.i. ha-1. Ryegrass seedlings of
comparable size were transplanted into the soil at intervals of two hours, three weeks and four
weeks after glyphosate application referred to as TAS1, TAS2 and TAS3 respectively.
Evidence of soil glyphosate activity was shown by the decrease in percentage survival with
the application of glyphosate. This was significant in the SS soil where about 60% and 48%
survival in G1 and G2 GAR respectively was observed compared to about 100% in the
untreated control when transplanted three weeks after glyphosate application. The decrease in
percentage survival was time mediated with significant effect of G2 GAR shown at TAS 1
whereas at G3 GAR the effect was significant at TAS1 and TAS 2. At TAS 3 there was no
effect at all GARs. Similar trends were observed with dry mass and shoot length.
Trace metals required for normal plant growth have been implicated in the reduction of
glyphosate efficacy. This follows glyphosate’s original development as a metal chelator.
Glyphosate-trace metal antagonism has recently sparked interest following co-application in
glyphosate resistant soybeans. Molybdenum (Mo), an anion, may play a role at the
physiological level on the antagonism of glyphosate. A greenhouse assay was carried out where seedlings grown from seeds (of susceptible commercial ryegrass cultivar (S biotype)
and glyphosate resistant biotype (R biotype)) were grown with nutrient solutions containing
0x, 1x and 2x molybdenum (Mo) concentrations where 1x is 0.05 mg L-1 Mo. Glyphosate was
applied at 0 (0x), 135 (1/4x), 270 (1/2x), 540 (1x) and 1040 (2x) g a.i. ha-1 rates. In the R
biotype applying 2x Mo resulted in 0% survival in the R biotype at 1x GAR compared to 50%
and 90% survival at the same GAR with 0x and 1x Mo. In terms of dry mass and shoot length
the results did not show any conclusive trends. / AFRIKAANSE OPSOMMING: Glifosaat is ‘n baie belangrike onkruiddoder wat in verskeie onkruidbeheerstelsels gebruik
word. Dit is as gevolg van verskeie positiewe eienskappe waaroor dit besit onder andere
sistemiese werking, wye spektrum van onkruidbeheer en omgewingsvriendelike werking. Die
onkruiddoder se effektiwiteit en gebrek aan residuele aktiwiteit is dus belangrik om
bevredigende onkruidbeheer te bewerkstellig sonder om skade aan die omgewing te
veroorsaak. Ten spyte van hierdie voordelige eienskappe het glifosaat ook tekortkominge.
Vanaf 1996 is ontwikkeling van weerstand teen glifosaat in onkruide ‘n groot bron van
kommer. Daar is egter ook ander faktore wat die maksimum potensiaal van glifosaat strem.
Enige faktore wat die effektiwiteit van glifosaat strem mag veroorsaak dat die teikenplant aan
subletale dosisse van glifosaat blootgestel word. Dit mag weer daartoe lei dat sulke plante
blootgestel word aan die ontwikkeling van weerstand. Sommige faktore wat die effektiwiteit
van glifosaat mag strem en dus moontlik kan lei tot seleksie vir weerstand is in hierdie studie
ondersoek.
Alhoewel glifosaat ‘n na-opkoms middel is kan die effektiwiteit moontlik beïnvloed
word deur grondfaktore en nutriënte. Hierdie moontlikheid is ondersoek in ‘n glashuisstudie
waarin raaigras (Lolium spp.) gebruik is. In hierdie studie is raaigras geplant in drie
verskillende grondsoorte nl. suiwer sand (SS), grond vanaf ‘n weidingskamp (PS) en grond
vanaf ‘n gewasland (CS). Die gronde het gevarieer in terme van nutriëntinhoud en alhoewel al
drie gronde as sand geklassifiseer is, was daar tog verskille in fisiese eienskappe. Hierdie
afdeling het uit vier eksperimente bestaan. In die eerste eksperiment is die invloed van
verskillende gronde (PS, CS en SS) waarin die kommersiële raaigras kultivar geplant was op
die effektiwiteit van glifosaat (360 g a.b. L-1 formulasie) teen vyf verskillende dosisse (GAR)
ondersoek. Die dosisse was 0 (0x), 67.5 (1/8x), 135 (1/4x), 270 (1/2x) and 540 (1x) g a.b. ha-1.
Die tweede eksperiment het die invloed van twee grondsoorte (PS en CS) waarin ‘n vatbare
kommersiële raaigras kultivar en ‘n glifosaat weerstandbiedende raaigras biotipe geplant is, se
invloed op die effektiwiteit van glifosaat ondersoek. Die dosisse was 0 (0x), 270 (1/2x), 540
(1x), 1080 (2x) and 2160 (4x) g a.b. ha-1. Die derde en vierde eksperimente was soortgelyk
aan die eerste eksperiment behalwe dat die derde eksperiment die invloed van voeding (suiwer
gedistileerde water teenoor ‘n gebalanseerde voedingsoplossing) saam met besproeiing ondersoek het. In die vierde eksperiment is die grondwerking van glifosaat wat as
blaarbespuiting toegedien is ondersoek deurdat sommige potte wat gespuit is se oppervlakte
met ‘n laag watte bedek is tydens die spuitproses en dadelik na spuit verwyder is teenoor die
ander behandeling waar die grondoppervlakte nie bedek is nie. Die resultate het getoon dat i)
grondtipe die effektiwiteit van glifosaat beïnvloed met beter beheer (19% oorlewing) in die PS
grond vergeleke met 50% en 62% oorlewing in die CS en SS grondtipes respektiewelik.
Hierdie effek kan moontlik beïnvloed word deur die weerstandsvlak van spesies omdat ii) die
effek in die weerstandbiedende biotipe omgekeer is met ongeveer 95% oorlewing in the PS
grondtipe vergeleke met 78% in die CS grondtipe; iii) effektiwiteit van glifosaat is beïnvloed
deur die voedingstatus van die grond en die besproeiingswater. Dit word aangedui deur die
afname in beheer van raaigras (100% oorlewing) wat in SS grond gegroei het en met suiwer
gedistilleerde water besproei is vergeleke met 45% oorlewing in dieselfde grond wanneer met
‘n gebalanseerde voedingsoplossing besproei is. Plante wat in PS grond gegroei het het geen
betekenisvolle verskille tussen die besproeiingsbehandelings getoon in hulle reaksie op
glifosaattoediening nie, waarskynlik as gevolg van die inherente hoër nutriëntinhoud van die
grond en iv) glifosaat effektiwiteit word beïnvloed deur die hoeveelheid glifosaat wat die
grond bereik en deur die wortels opgeneem word. Dit is bewys in plante wat in PS grond
gegroei het waar 93.3% plante oorleef het waar die grondoppervlakte bedek was teenoor 60%
oorlewendes waar die grondoppervlakte nie bedek was nie indien glifosaat teen 1/8x toegedien
is. ‘n Soortgelyke tendens is by die 1/4x dosis waargeneem. ‘n Teenoorgestelde effek is in SS
grond waargeneem waar die oorlewingspersentasie in bedekte en onbedekte grond by 1/4x
glifosaatdosis 0% en 40% onderskeidelik was.
Glifosaat is aanvanklik aangeprys as ‘n omgewingsvriendelike onkruiddoder omdat dit
vinnig in grond afgebreek word en omdat dit geadsorbeer word aan metale in die
grondmatriks. In teenstelling hiermee is daar egter verslae in die literatuur wat dui daarop dat
glifosaatresidue in die grond gewasopbrengste kan verlaag. In die gemelde studies is gevind
dat fitotoksisiteit van glifosaat residue afhang van grondeienskappe en grondvrugbaarheid. Na
aanleiding hiervan is ‘n glashuisstudie uitgevoer waarin die fitotoksisiteit van residuele
glifosaat op ‘n kommersiële raaigraskultivar wat in PS, CS en SS gronde groei, ondersoek is.
Glifosaat is op die grond in potte toegedien teen 0 (G1), 540 (G2) and 3240 (G3) g a.b. ha-1.
Raaigras saailinge is daarna in die potte ingeplant twee ure, drie weke en vier weke nadat die
glifosaat toegedien is. Bewys van grondaktiwiteit van glifosaat is gelewer deur die
vermindering in persentasie oorlewing van die saailinge met toediening van glifosaat. Die vermindering in oorlewing was betekenisvol in die SS grond waar ongeveer 60% en 48%
oorlewing van saailinge was by G2 en G3 dosisse onderskeidelik teenoor 100% oorlewing in
die onbehandelde kontrole. Die afname in persentasie oorlewing is deur tyd beïnvloed deurdat
die G2 dosis slegs by die twee ure behandeling betekenisvolle verlaging in oorlewing
veroorsaak het terwyl die G3 dosis by die twee ure sowel as die drie weke behandeling
betekenisvolle verlagings veroorsaak het. Vier weke na toediening was daar geen effek van
glifosaat op die saailinge in enige van die gronde gewees nie. Soortgelyke tendense is
waargeneem by die droëmassa en lengte data.
Spoorelemente wat noodsaaklik is vir normale plantgroeiprosesse is al geïmpliseer in
verlaging van glifosaat effektiwiteit. Dit is waarskynlik omdat glifosaat oorspronklik
ontwikkel is as ‘n metaal cheleerder. Glifosaat-spoorelement antagonisme was onlangs in die
nuus nadat glifosaat saam met sulke elemente toegedien is op glifosaat weerstandbiedende
sojabone. Molibdeen (Mo), ’n anioon, mag ’n rol op fisiologiese vlak speel in doie
effektiwiteit van glifosaat. ‘n Glashuisstudie is uitgevoer waarin saailinge van ‘n glifosaat
vatbare kommersiële raaigras kultivar en ‘n glifosaat weerstandbiedende raaigras biotipe
besproei is met voedingsmengsels wat 0x, 1x en 2x Mo bevat waar 1x 0.05 mg L-1 Mo is.
Glifosaat is op die plante toegedien teen 0 (0x), 135 (1/4x), 270 (1/2x), 540 (1x) and 1040 (2x)
g a.b. ha-1 dosisse. Die 2x Mo toediening het gelei tot 0% oorlewing in die R biotipe by 1x
GAR vergeleke met 50% en 90% oorlewing by dieselfde GAR met 0x en 1x Mo. In terme van
droëmateriaal en lengtegroei was daar geen konkrete tendense nie.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/17951
Date12 1900
CreatorsNcedana, Chwayita
ContributorsPieterse, P. J., Stellenbosch University. Faculty of AgriSciences. Dept. of Agronomy.
PublisherStellenbosch : Stellenbosch University
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageEnglish
TypeThesis
Format71 p. : ill.
RightsStellenbosch University

Page generated in 0.0037 seconds