Return to search

Structural and kinetic analysis of carbon fixation and sucrose metabolism in sugarcane

Thesis (MSc (Biochemistry))--Stellenbosch University, 2008. / The aim of this study is the theoretical investigation of carbon fixation in sugarcane
leaves. Sugarcane has a well known reputation for accumulating sucrose in
the stalk to levels as high as 650 mM, almost a fifth of the plant’s fresh weight.
Although this is an efficient accumulating mechanism, there is an even more
efficient ‘carbon pump’ found in C4 plants. This is a well documented carbon
concentrating mechanism and one of the first to be studied. However scientists
are still trying to understand the carboxylating mechanism and the regulation
thereof. It has been speculated that this mechanism is at its saturation level and
elevating carbon dioxide will have little or no effect on further carbon fixation.
Futher, studies suggest that the sucrose accumulating sink is able to regulate photosynthesis.
Therefore a regulatory mechanism should exist from the sink to carbon
fixation in order for such regulation to occur. Thework in this thesis therefore
lays the foundation for investigating regulation of photosynthesis.
The field of systems biology is the study of cellular networks by assemblingmodels.
Pathways are considered as systems and notmerely collections of single components.
This allows the interaction of pathway metabolites and the regulation
that they have on one another to be studied. The questions asked pertaining to a
pathway, will determine the types of model analysis. Structural analysis is useful
for studying stoichiometric models, determining characteristics like energy
consumption, futile cycles and valid pathways through a system at steady-state.
Kinetic analysis on the other hand, gives insight into system dynamics and the
control exerted by the system components, predicting time-course and steady
states.
In this thesis we begin to investigate photosynthesis in sugarcane leaves and
the role it has in accumulating sucrose in the plant. Firstly, a structural model
was developed incorporating carbon fixation, sucrose production in the leaf and subsequent transport of sucrose to the storage parenchyma and accumulation.
The model was analysed using elementary mode analysis, showing that there are
twelve routes for producing sucrose with no pathway beingmore energy efficient
than any other. Further, it highlighted a futile cycle transporting triose phosphates
and phosphoglycerate between the two photosynthetic compartments in
the leaf. In the storage parenchyma, manymore futile cycleswere revealed,many
of them energetically wasteful. Three other sets of elementary modes describe
sucrose’s destination in either the vacuole or use in glycolysis or fibre formation,
each with a different amount of required energy equivalents. The fourth set describes
how sucrose cannot be converted to fibre precursors without also being
used for glycolyis building blocks.
Secondly, a kinetic model of carbon fixation in the leaf was assembled with the
primary goal of characterising thismoiety-conserved cycle. This included the collation
of kinetic data, incorporating volumes of the compartments and the areas
of the location of the transporters into the model. This model was then analysed
using metabolic control analysis. The model was able to predict metabolite concentration
in the pathway at steady-state which were compared to those found
experimentally. However, modifications need to be made to the model before
further analysis is done so that the model predicted values match the experimental
values more accurately. Time course analysis and response coefficients were
also calculated for the carbon fixation cycle.
Thework in this thesis therefore paves the way for understanding photosynthesis
and its regulation in sugarcane leaves. Such work has the potential to pinpoint
genetic engineering target points, allowing for better hybrid selection and propagation.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/2653
Date03 1900
CreatorsMeyer, Kristy
ContributorsRohwer, J. M., Hofmeyr, J.-H. S., Stellenbosch University. Faculty of Science. Dept. of Biochemistry.
PublisherStellenbosch : Stellenbosch University
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
RightsStellenbosch University

Page generated in 0.0028 seconds