Thesis (PhD (Mechanical and Mechatronic Engineering))-- University of Stellenbosch, 2007. / ENGLISH ABSTRACT: The dissertation builds on previous research (Pretorius, 2004) and investigates the optimization and control of a large-scale solar chimney power plant. Performance results are based on a reference location near Sishen in South Africa and a so-called reference solar chimney power plant, with a 5000 m collector diameter and a 1000 m high, 210 m diameter chimney. The numerical simulation model is refined and used to perform a sensitivity analysis on the most prominent operating and technical plant specifications. Thermo-economically optimal plant configurations are established from simulation results and calculations according
to an approximate plant cost model. The effects of ambient wind, temperature lapse
rates and nocturnal temperature inversions on plant performance are examined. Various
new technologies are investigated for the purpose of controlling plant output according to specific demand patterns. The incorporation of vegetation under the collector roof of the plant and the influence thereof on plant performance is also explored. Results indicate that, through the modification of the collector roof reflectance, collector roof emissivity, ground surface absorptivity or ground surface emissivity, major improvements
on plant performance are possible. Introducing thermal insulation or double glazing of the collector roof also facilitates substantial enhancements on plant yield. Simulations predict a notable sensitivity to the ground surface absorptivity value, while variable atmospheric temperature lapse rates and windy ambient conditions may impair plant performance significantly. Furthermore, sand is found to be unsuitable as plant ground type and thermoeconomically optimal solar chimney plant dimensions are determined to be generally larger than plant dimensions employed in previous studies. Good dynamic control of solar chimney power output is established, suggesting that a solar chimney power plant can be implemented as a base or peak load electricity generating facility. Lastly, results predict that vegetation,
when provided with sufficient water, will be able to survive under the collector roof but the inclusion of vegetation will however cause major reductions in plant performance. / AFRIKAANSE OPSOMMING: Die proefskrif bou op vorige navorsing (Pretorius, 2004) en ondersoek die optimering
en beheer van 'n grootskaalse sonskoorsteen-kragstasie. Uitsetresultate word baseer op 'n
verwysingsligging naby Sishen in Suid-Afrika en 'n sogenaamde verwysingskragstasie, met 'n
kollektor deursnee van 5000 m en 'n 1000 m hoë, 210 m deursnee skoorsteen. Die numeriese
rekenaarmodel is verbeter en gebruik vir die uitvoering van 'n sensitiwiteits-analise op die
belangrikste bedryfs- en tegniese kragstasie spesifikasies. Termo-ekonomiese optimale
aanlegkonfigurasies is bepaal volgens die uitsetresultate van die rekenaarmodel en benaderde
aanleg-kosteberekeninge volgens 'n eenvoudige kostemodel. Die invloed van wind, atmosferiese
temperatuur gradiënte en nagtelike temperatuur inversies op kragstasie uitset word
beskou. Verskeie nuwe tegnologië word ondersoek met die doel om aanleg uitset te kan
beheer volgens spesifieke elektrisiteit aanvraagspatrone. Die inkorporasie van plantegroei
onder die kollektordak, en die invloed daarvan op kragstasie uitset, word ook beskou.
Bevindings dui aan dat, deur die wysiging van die kollektordak refleksie, kollektordak
emissiwiteit, grondoppervlak absorptiwiteit of grondoppervlak emissiwiteit, groot verbeterings
op aanleg uitset moontlik is. Die implementering van termiese isolasie of 'n dubbelglaslaag
vir die kollektordak veroorsaak ook 'n beduidende verheffing in kragstasie uitset.
Simulasies voorspel 'n merkbare sensitiwiteit teenoor die grondoppervlak absorptiwiteitswaarde,
terwyl veranderlike atmosferiese temperatuur daaltempos en winderige omgewingstoestande
aanleg uitset beduidend mag belemmer. Verder is bevind dat sand ongeskik is as
aanleg grond tipe en dat termo-ekonomiese optimale sonskoorsteen-kragstasie dimensies in
die algemeen groter is as die aanvaarde aanlegdimensies van vorige studies. Goeie dinamiese beheer van sonskoorsteen-kragstasie uitset is bevestig, wat suggereer dat die sonskoorsteenkragstasie as 'n basis of pieklas elektrisiteitopwekkings-aanleg ingespan kan word. Ten laaste voorspel resultate dat plantegroei, mits dit voorsien word van genoegsame water, sal kan oorleef onder die kollektordak maar dat die inkorporasie van plantegroei die aanleg uitset
beduidend sal benadeel. / Sponsored by the Centre for Renewable and Sustainable Energy Studies
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/349 |
Date | 03 1900 |
Creators | Pretorius, Johannes Petrus |
Contributors | Kroger, D. G., University of Stellenbosch. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering. |
Publisher | Stellenbosch : University of Stellenbosch |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | Unknown |
Type | Thesis |
Rights | University of Stellenbosch |
Page generated in 0.0021 seconds