Return to search

Hybrid Finite Element/Boundary Element solutions of general two dimensional electromagnetic scattering problems

Thesis (MEng) -- University of Stellenbosch, 1991. / ENGLISH ABSTRACT: A two-dimensional Coupled Element Method (CEM) for solving electromagnetic
scattering problems involving lossy, inhomogeneous, arbitrarily shaped cylinders,
was investigated and implemented. The CEM uses the Finite Element Method
(FEM) to approximate the fields in and around the scatterer and the Boundary
Element Method (BEM) to approximate the far-field values. The basic CEM theory
is explained using the special, static electric field problem involving the solution of
Laplace's equation. This theory is expanded to incorporate scattering problems,
involving the solution of the Helmholtz equation. This is done for linear as well as
quadratic elements. Some of the important algorithms used to implement the CEM
theory are discussed.
Analytical solutions for a round, homogeneous- and one layer coated PC cylinder are
discussed and obtained. The materials used in these analytical solutions can be lossy
as well as chiral. The CEM is validated by comparing near- and far-field results to
the analytical solution. A comparison between linear and quadratic elements is also
made. The theory of the CEM is further expanded to incorporate scattering from
chiral media / AFRIKAANSE OPSOMMING: 'n Gekoppelde Element Metode (GEM) wat elektromagnetiese weerkaatsingsprobleme,
van verlieserige, nie-homogene, arbitrere voorwerpe kan oplos, is ondersoek
en geimplimenteer. Die GEM gebruik die Eindige Element Metode (EEM) om die
velde in en om die voorwerp te benader. 'n Grenselementmetode word gebruik om
die vervelde te benader. Die basiese teorie van die GEM word verduidelik deur die
toepassing daarvan op die spesiale geval van 'n statiese elektriese veld- probleem.
Hierdie probleem verlang die oplossing van Laplace se vergelyking. Die teorie word
uitgebrei om weerkaatsingsprobleme te kan hanteer. Die weerkaatsingsprobleme
verlang die oplossing van 'n Helmholtz-vergelyking. Hierdie teorie word ontwikkel
vir lineere sowel as kwadratiese elemente. Van die belangrike algoritmes wat
gebruik is om die GEM-teorie te implimenteer, word bespreek.
Analietise oplossings vir ronde, homogene en eenlaag bedekte perfek geleidende
silinders word bespreek en verkry. Die material wat in die oplossings gebruik word,
kan verlieserig of kiraal wees. Die GEM word bekragtig deur naby- en verveld
resultate te vergelyk met ooreenkomstige aitalitiese oplossings. Die lineere en
kwadratiese element- resultate word ook met mekaar vergelyk. Die GEM-teorie is
verder uitgebrei sodat weerkaatsing vanaf kirale materiale ook hanteer kan word.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/69271
Date02 1900
CreatorsMeyer, Frans J. C. (Frans Johannes Christiaan)
ContributorsDavidson, D. B., Stellenbosch University. Faculty of Engineering. Dept. of Electrical and Electronic Engineering.
PublisherStellenbosch : Stellenbosch University
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageUnknown
TypeThesis
Format90, 47 p. : ill.
RightsStellenbosch University

Page generated in 0.0019 seconds