Return to search

An investigation of the response of different materials to blast loading

Includes bibliographical references. / This dissertation reports on the results of an experimental and numerical investigation into the response of different materials to air-blast loading. Mild steel, armour steel (Armox 370T and 440T), Aluminium alloy 5083-H116, Twintex and Dyneema square plates were blast loaded on a horizontal pendulum at the Blast Impact and Survivability Research Unit (BISRU), University of Cape Town. The blasts were generated by detonating disc-shaped PE4 explosives of various diameters and standoff distances. The chosen plates are of side length 500mm (4mm thick mild steel and armour steel plates) and side length of 400mm (aluminium, Twintex and Dyneema panels). The charge mass was varied between 9g and 60g for two charge diameters, namely: 50mm and 75mm, and stand-off distances of 25mm, 38mm and 50mm. A polystyrene bridge was used to position the charges at the centre of plates, without any polystyrene between the charge and the plate in order to minimise any effects the polystyrene may have had on the plate deformation. The transient response of the 500mm square plates (mild steel and Armox 370T) was measured with the use of Light Interference Equipment (LIE) and numerical simulations performed in ANSYS AUTODYN, with the aim of gaining greater insight into the response of the two different materials. The details of the experimental setup and method used for the LIE as well as the development of the AUTODYN computational model are presented. The air and explosive were modelled as Arbitrary Langrange-Euler (ALE) elements while the test plates were modelled as Langrangian shell elements. Since the geometry of the plates was square, the simulations had to be performed in 3D quarter-symmetry. The transient response, permanent final displacement and maximum transient displacement of the numerical simulations were compared to the corresponding experimental results. The mild steel plates all exhibited good correlation between experimental and simulated results. However, the Armox 370T simulated results showed an under-prediction of the displacement magnitude and impulse compared to the experimental results. Experimentally, both the mild steel and armour steel exhibited a linear increase in deformation with increasing charge mass. Blast tests were also performed on 3mm thick mild steel, aluminium, Twintex and Dyneema square plates of 400mm side length. The aim was to gain a greater understanding and compare of the response of different material types (ferrous, non-ferrous, Glass Fibre Polypropylene and Ultra High Molecular Weight Polyethylene) under blast loading. The aluminium plates performed better than the mild steel, on an equivalent mass basis, in terms of permanent displacements and failure threshold impulse. The aluminium plates were significantly thicker (10.5mm compared to 3mm) than the mild steel plates, which may have contributed to its response under blast. The Twintex panels mostly exhibited failure in the form of fibre fracture and matrix failure whereas the Dyneema panels only exhibit large inelastic deformation, although the Dyneema were clamped differently to the other panels. Dimensionless analysis was performed on all of the materials except for Dyneema. Initially a scaling factor was used to account for the varying stand-off distances but proved to be unnecessary due to the type of confinement used (unconfined free air-blasts versus partially confined tube). Once the scaling factor was removed, the dimensionless impulse values showed relatively good linear correlation with the predicted trend.
Date January 2012
CreatorsLee, Wei-Chi
ContributorsLangdon, Genevieve
PublisherUniversity of Cape Town, Faculty of Engineering and the Built Environment, Blast Impact and Survivability Research Unit
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeMaster Thesis, Masters, MSc

Page generated in 0.0215 seconds