Return to search

Efficient radio resource management in next generation wireless networks

The current decade has witnessed a phenomenal growth in mobile wireless communication
networks and subscribers. In 2015, mobile wireless devices and connections were reported to have grown to about 7.9 billion, exceeding human
population. The explosive growth in mobile wireless communication network subscribers has created a huge demand for wireless network capacity,
ubiquitous wireless network coverage, and enhanced Quality of Service (QoS). These demands have led to several challenging problems for wireless
communication networks operators and designers. The Next Generation Wireless Networks (NGWNs) will support high mobility communications, such as
communication in high-speed rails. Mobile users in such high mobility environment demand reliable QoS, however, such users are plagued with a
poor signal-tonoise ratio, due to the high vehicular penetration loss, increased transmission outage and handover information overhead, leading
to poor QoS provisioning for the networks' mobile users. Providing a reliable QoS for high mobility users remains one of the unique challenges
for NGWNs. The increased wireless network capacity and coverage of NGWNs means that mobile communication users at the cell-edge should have
enhanced network performance. However, due to path loss (path attenuation), interference, and radio background noise, mobile communication
users at the cell-edge can experience relatively poor transmission channel qualities and subsequently forced to transmit at a low bit transmission
rate, even when the wireless communication networks can support high bit transmission rate. Furthermore, the NGWNs are envisioned to be Heterogeneous
Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent
wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio
resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best
available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and
efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the
different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage,
QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing
reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for
improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes
in moving wireless networks is proposed. The performance of proposed ATMA CAC scheme is investigated and compare it with the traditional
CAC scheme. The ATMA scheme exploits the mobility events in the highspeed mobility communication environment and the calls (new and
handoff calls) generation pattern to enhance the QoS (new call blocking and
handoff call dropping probabilities) of the mobile users. The numbers of new and
handoff calls in wireless communication networks are dynamic random processes that can be
effectively modeled by the Continuous Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs).
The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent
wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an
integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses
the problem of how to select the best available access network for a given network user connection. For the integrated platform of
HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these
challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless
network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been
proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA)
Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are
of critical importance for communicating nodes in moving wireless networks is proposed.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/24473
Date January 2017
CreatorsObayiuwana, Enoruwa
ContributorsFalowo, Olabisi E
PublisherUniversity of Cape Town, Faculty of Engineering and the Built Environment, Department of Electrical Engineering
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Thesis, Doctoral, PhD
Formatapplication/pdf

Page generated in 0.0028 seconds