Return to search

Techno-Economic modelling of hybrid renewable mini-grids for rural electrification planning in Sub-Saharan Africa

Access to clean, modern energy services is a necessity for sustainable development. The UN Sustainable Development Goals and SE4ALL program commit to the provision of universal access to modern energy services by 2030. However, the latest available figures estimate that 1.1 billion people are living without access to electricity, with over 55% living in Sub-Saharan Africa. Furthermore, 85% live in rural areas, often with challenging terrain, low income and population density; or in countries with severe underinvestment in electricity infrastructure making grid extension unrealistic. Recently, improvements in technology, cost efficiency and new business models have made mini-grids which combine multiple energy technologies in hybrid systems one of the most promising alternatives for electrification off the grid. The International Energy Agency has estimated that up to 350,000 new mini-grids will be required to reach universal access goals by 2030. Given the intermittent and location-dependent nature of renewable energy sources, the evolving costs and performance characteristics of individual technologies, and the characteristics of interacting technologies, detailed system simulation and demand modelling is required to determine the cost optimal combinations of technologies for each-and-every potential mini-grid site. Adding to this are the practical details on the ground such as community electricity demand profiles and distances to the grid or fuel sources, as well asthe social and political contexts,such as unknown energy demand uptake or technology acceptance, national electricity system expansion plans and subsidies or taxes, among others. These can all have significant impacts in deciding the applicability of a mini-grid within that context. The scope of the research and modelling framework presented focuses primarily on meeting the specific energy needs in the sub-Saharan African context. Thus, in being transparent, utilizing freely available software and data as well as aiming to be reproducible, scalable and customizable; the model aims to be fully flexible, staying relevant to other unique contexts and useful in answering unknown future research questions. The techno-economic model implementation presented in this paper simulates hourly mini-grid operation using meteorological data, demand profiles, technology capabilities, and costing data to determine the optimal component sizing of hybrid mini-grids appropriate for rural electrification. The results demonstrate the location, renewable resource, technology cost and performance dependencies on system sizing. The model is applied for the investigation of 15 hypothetical mini-grids sites in different regions of South Africa to validate and demonstrate the model’s capabilities. The effect of technology hybridization and future technology cost reductions on the expected cost of energy and the optimal technology configurations are demonstrated. The modelling results also showed that the combination of hydrogen fuel cell and electrolysers was not an economical energy storage with present day technology costs and performance. Thereafter, the model was used to determine an approximate fuel cell and electrolyser cost target curve up to the year 2030. Ultimately, any research efforts through the application of the model, building on the presented framework, are intended to bridge the science-policy boundary and give credible insight for energy and electrification policies, as well as identifying high impact focus areas for ongoing further research.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/29462
Date11 February 2019
CreatorsIreland, Gregory
ContributorsMerven, Bruno
PublisherUniversity of Cape Town, Faculty of Engineering and the Built Environment, Department of Mechanical Engineering
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeMaster Thesis, Masters, MSc
Formatapplication/pdf

Page generated in 0.0024 seconds