Return to search

An evaluation of strain rate sensitivity of selected stainless steels at different temperatures

M.Ing. / In the design and analysis of components and structures, detailed information on the material behaviour and its properties is required. When a material is loaded dynamically, such as in metal punching, the material properties may not be the same as when loaded statically. This is known as the strain rate sensitivity of a material, which implies that properties such as the yield strength, tensile strength and ductility may vary with the rate at which the material is loaded. South Africa is one of the large stainless steel producing countries. Seventy percent of the known chromium ore reserves are found in the Bushveld Igneous Complex in the Northern Province and Mpumalanga. To compete on the global stainless steel market it is essential that the South African producers have all the relevant product information directly available. Considerable research has been performed on mild steel at different strain rates and temperatures[1]. Work has also been done on some austenitic stainless steels. Very little, or no work has been done in this regard on ferritic and martensitic stainless steels and on the proprietary alloy 3CR12[2]. The aim of this thesis is to investigate the strain rate sensitivity of Types 304, 430 and 316 stainless steel, 3CR12 corrosion resistant steel and mild steel at different temperatures. To achieve this, tensile tests are performed. at strain rates between 10's -1 to approximately 100s -1 and at temperatures ranging from -40°C to 140°C. Shear tests are also performed at various strain rates, to investigate the effect that material behaviour has on a typical metal working process. The results obtained show that all the materials tested are strain rate sensitive. The strain rate sensitivity varies as a function of the material tested and the testing temperature. Constitutive models which take into account the strain rate sensitivity at room temperature for all the materials are also presented. These models describe the behaviour of the material fairly accurately. Three dimensional plots are also presented which depict how the yield strength, tensile strength and elongation vary as a function of both strain rate and temperature. These plots clearly show material trends for the strain rates and temperatures tested.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:10242
Date12 September 2012
CreatorsMarques, Sérgio
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds