Return to search

A new perspective and a framework for software generation

M.Sc. / The following questions led to this study: Why are there still so many approaches to the software generation process without one single approach taking the lead? Not only are there several methodologies available for the software generation process, but a methodology is not in use for long before it is replaced by an improved version or even another methodology. This is as a result of continuing further development and research. Sometimes the new methodology is not necessarily an improvement, but a paradigm shift. An example of this is object-orientation which followed shortly after the introduction of CASE as an alternative to software generation. Why are users to a large extent still dissatisfied and disillusioned with the software generation process even though they are more involved with it than before? User are more involved in the software generation process as a result of the availability of sophisticated tools, as well as joint sessions with the developer during the analysis and design stages of the software generation process. Yet, despite this, software systems in most cases still do not perform according to users' expectations. Why did the use of formal methodologies, based on successful techniques of the engineering field, only result in a limited improvement of the quality, control and operationalization of the software system? The cost of maintenance is still very high in relation to the total cost of generating a software system. The same degree of success attained in, say, the engineering field, could not be achieved [AND I]. Why is there a simultaneous movement towards incremental approaches and formal methods although these approaches are really moving in opposite directions? The incremental approach is based on obtaining quick results through prototyping without necessarily following a formal methodology [AND2]. Formal methods, on the other hand, attempt to formalize the software generation process through mathematical transformations. The advantage of using these mathematical transformations is that automation and verification of processes can be achieved [McC1]. Both these approaches show promising results, but the incremental approach might suit the developer better and is already used widely by practitioners. Why is it so difficult to find the correct methodology for generating a software system? The selection of an appropriate methodology is extremely difficult because of the variety of methodologies, technologies and hardware available. Some methodologies are also used for only a limited period because of rapid advances in technology. Why do sophisticated and user-friendly tools not succeed in simplifying the software generation process? Despite sophisticated tools such as CASE, where the user of these tools is guided through the different steps of the methodology, these tools have not succeeded in delivering the results expected by industry. The problems experienced during the software generation process are investigated. In order to distinguish between different approaches to software generation, is it necessary to place different approaches in relation to one another by considering the different elements of each. The characteristics and constraints of the software generation process must also be considered. All the issues pertaining to the software generation process will be discussed in terms of the problem statement.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:2645
Date17 August 2012
CreatorsDe la Harpe, Margaretha
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis

Page generated in 0.008 seconds