Return to search

The effect of poly (crylic acid) and poly (ethyleneco-maleic anhydride) on nickel powder precipitation

M.Tech. / The study into the effect of additives used in nickel powder precipitation by sodium hypophosphite has been carried out. Reduction experiments were conducted in a 10 L stainless steel batch reactor fitted with 3 baffles, 4-bladed axial impeller, heating element, thermocouple and thermostat. Nickel seed was used to initiate the reduction process, sodium hypophosphite was used as a reducing agent, and ammonia solution was used to adjust pH, poly(ethylene-comaleic anhydride) (EMA) was used as the first additive and poly(acrylic acid) (PA) as the second additive. Reduction experiments were conducted at a temperature between 60oC to 70oC, pH around 8 and a reaction time of 3 min. Synthetic nickel sulfate solution and sodium hypophosphite solutions at concentration of 0.5 g/L were used as nickel feed solution and reducing agent, respectively. Additives were investigated at high and low concentrations of 5 mg/L and 10 mg/L. The effect of additives on reduction behavior of nickel was investigated by studying the evolution of the volume distribution, moments, specific surface area, and rate of reduction and purity of the powder product. EMA was found to be a growth promoter and PA was found to be a growth inhibitor. The highest reduction rate was observed in the presence of EMA and the lowest in the presence of PA. The SEM micrographs of the powder obtained in the presence of EMA and PA showed that the powder was spherical shaped, open, dentritic and more porous compared with that of the seed particles. Both additives were found to increase the pore size of the powder particles. The presence of particle fragments observed in the scanning electron micrographs confirmed breakage as one of the major particulate process. The addition of additives significantly affected the volume distribution at lower concentrations of 5 mg/L. The extent of aggregation increased with increasing dosages of PA and decreased with increasing dosages of EMA. The highest specific surface area was obtained in the presence of 5 mg/L of EMA.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:8886
Date31 July 2012
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis

Page generated in 0.0038 seconds