Return to search

Biological studies on the lepidopteran egg parasitoid Trichogrammatoidea lutea Girault (Hymenoptera : Trichogrammatoidae) at various temperatures

The African bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), is a polyphagous pest that attacks many crops in sub-Saharan Africa. The pest is currently managed through chemical control, and by planting Bt-transgenic cotton. Trichogrammatoidea lutea Girault (Hymenoptera: Trichogrammatidae) is an indigenous egg parasitoid of H. armigera in southern Africa. The study was undertaken to determine the potential of T. lutea as a biological control agent for augmentative releases as an alternative to chemical control, and to pave the way for the development of a mass-rearing method. The biology of T. lutea was examined in the laboratory on H. armigera, Chilo partellus (Swinhoe), and Cadra (formerly Ephestia) cautella (Walker) (Lepidoptera: Pyralidae). The objectives of the study were to determine (i) the exposure time of UV-irradiation required for killing the embryos of the hosts and the effect of UV-irradiated eggs on life history parameters of T. lutea, (ii) which host(s) and temperature(s) (18, 21, 24, 27, 30 and 35 °C) are suitable for mass-rearing of T. lutea, and (iii) the longevity and age-related reproductive biology of T. lutea on H. armigera. Findings of this study showed that 13 minutes of UV-irradiation were sufficient to kill embryos of all three host species. Life history parameters were not influenced by UV-irradiation but by host species. Parasitism, number of progeny per parasitized egg, proportion of females, and developmental time of T. lutea aried on different host species at temperatures ranging from 18 to 30 °C. Trichogrammatoidea lutea did not develop at 35 °C. Overall parasitism by T. lutea was higher on H. armigera and Cadra cautella compared to Chilo partellus. The number of progeny per parasitized egg was highest on H. armigera compared to Cadra cautella and Chilo partellus. The proportion of females was highest on Chilo partellus, intermediate on Cadra cautella, and lowest on H. armigera. For all species and temperatures tested, parasitism and number of progeny per parasitized egg by T. lutea was highest on H. armigera at 27 °C. The lower threshold for development of T. lutea on all hosts was approximately 12 °C. Female T. lutea parasitized eggs of H. armigera soon after eclosion, with the highest parasitism achieved on the day of eclosion. Though T. lutea parasitized eggs for up to 14 days, it may not be economically viable to keep them in cultures for more than three days since progeny became male biased three days after eclosion. The average longevity of female and male T. lutea was 9 and 6 days, respectively. The life table parameters of T. lutea, the net replacement rate (Ro), mean generation time (T), and instantaneous rate of population increase (rm) were 25.5, 9.79, and 0.33, respectively. The timing of inundative releases of T. lutea must be synchronised with the time that eggs of H. armigera are abundant in the field. The results of this study indicate that T. lutea is a good candidate for further testing for augmentative biological control of H. armigera in the field. If successful, T. lutea may provide opportunities for expanding tactics in the management of H. armigera in southern Africa. Copyright / Dissertation (MSc)--University of Pretoria, 2011. / Zoology and Entomology / unrestricted

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:up/oai:repository.up.ac.za:2263/24741
Date16 May 2011
CreatorsMawela, Khethani Vincent
ContributorsDr K Kruger, mawelak@arc.agric.za, Dr R Kfir
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeDissertation
Rights© 2011, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretori

Page generated in 0.0025 seconds