Return to search

Pre-service science teachers’ conceptual and procedural difficulties in solving mathematical problems in physical science

>Magister Scientiae - MSc / Students frequently leave first-year physical science classes with a dual set of physical laws in mind- the equations to be applied to qualitative problems and the entrenched set of concepts, many erroneous, to be applied to qualitative, descriptive, or explanatory problems. It is in this sense that the emphasis of this study is on ‘change’ rather than acquisition. Thus, a blend of theoretical framework was considered according to the aim of the study. Of immediate relevance in this regard within the “constructivist paradigm” are: Posner, Strike, Hewson and Gertzog’s (1982) conceptual change theory and the revised Bloom’s Taxonomy. Moreover, the very shift or restructuring of existing knowledge, concepts or schemata is what distinguishes conceptual change from other types of learning, and provides students with a more fruitful conceptual framework to solve problems, explain phenomena, and function in the world (Biemans & Simons, 1999; Davis, 2011). A quasi-experimental design was adopted to explore pre-service teachers’ conceptual and procedural difficulties in solving mathematical problems in physical science. Sixteen second and third year pre-service teachers in one of the historically black universities in the Western Cape, South Africa, participated in the study. Two inseparable concepts of basic mechanics, work-energy concepts were taught and used for data collection. Data were collected using questionnaires, Physical Science Achievement Test (PSAT), Multiple Reflective Questions (MRQ) and an interview. An explicit problem solving strategy (IDEAL strategy versus maths-in-science instructional model) was taught in the intervention sessions for duration of three weeks to the experimental group (E-group). IDEAL strategy placed emphasis on drill and practice heuristics that helped the pre-service teachers’ (E-group) understanding of problem-solving. Reinforcing heuristics of this IDEAL strategy include breaking a complex problem into sub-problems. Defining and representing problem (e.g. devising a plan-using Free-Body-Diagram) was part of the exploring possible strategies of the IDEAL. More details on IDEAL strategy are discussed in Chapter 3. The same work-energy concepts were taught to the control group (C-group) using lecture-demonstration method

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uwc/oai:etd.uwc.ac.za:11394/4009
Date January 2014
CreatorsIwuanyanwu, Paul Nnanyereugo
ContributorsOgunniyi, Meshach B., Govender, R
PublisherUniversity of the Western Cape
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
RightsUniversity of the Western Cape

Page generated in 0.0026 seconds