Return to search

Defining the factors that influence the biosorption of lead by paenibacillus castaneae and micrococcus luteus

A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science in, Microbiology and Biotechnology
2016. / Heavy metal contamination, of natural water resources, resulting from the large amounts of toxic waste generated by industrial practices is of great environmental concern. Lead (Pb) in particular is one of the most toxic heavy metals that leads to several health deficiencies upon human exposure. The reduction of heavy metals like Pb to acceptable levels in the water therefore becomes critical for potable and agricultural use.
Removal of heavy metals by conventional methods is expensive and results in secondary pollution. Bioremediation, a process that passively removes heavy metals from solution through microbial biosorption, is a much sought after alternative because it is more eco-friendly and cost-effective. Micrococcus luteus and Paenibacillus castaneae are two bacterial species reported to be highly resistant to Pb making them favourable as metal biosorbents. The present study aimed to further characterise these species as biosorbents by evaluating the influence of environmental conditions on their rate of biosorption of Pb. Each bacterial isolate was heat-killed and exposed to 0.5 mM (150 mg/L) Pb and the maximal rate of metal uptake calculated when the pH, temperature and biomass concentration were varied. Additionally, the initial metal concentration was increased from 0.005 to 1.25 mM to determine its effect on Pb uptake by each species. The influence of competing cations (Ni2+, Co2+, Mn2+ and Zn2+) on the rate of Pb uptake by each isolate was also established.
Both bacterial isolates resulted in the biosorption of at least 50% of 0.5 mM Pb ions when used at a pH of 7, temperature of 25 oC, and a biomass concentration of 2 g/L. The rate of metal uptake for M. luteus at the above mentioned parameters was found to be 24.51 mg/g biomass, while the rate of metal uptake for P. castaneae was 15.63 mg/g biomass. These findings indicated that M. luteus took up more Pb at a faster rate in comparison to P. castaneae. The present study furthermore elucidated that as the metal concentration of Pb was increased, the amount of Pb biosorbed by M. luteus decreased from 84.76% to 46.10%. Similarly, P. castaneae yielded 81.39% biosorption from 0.005 mM Pb but only 34.29% of Pb was taken up when the concentration was increased to 1.25 mM.
When the bacteria were exposed to various competing cations an increase in the rate of Pb biosorption was observed for P. castaneae while the opposite effect was noted for M. luteus.
Findings from this study show that under high metal concentrations, both M. luteus and P. castaneae are capable of significantly reducing the level of Pb from pure solution. The results warrant further treatment of several industrial effluents using these biosorbents for subsequent application in wastewater treatment. / MT2017

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:wits/oai:wiredspace.wits.ac.za:10539/22730
Date January 2017
CreatorsVallabh, Darshana
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatOnline resource (71 leaves), application/pdf

Page generated in 0.0014 seconds