Return to search

Primary uranium mineralisation of the central Damara Orogen, Namibia: a petrographic, geochemical and mineralogical account of the granite - hosted uranium deposits situated along the Swakop- and Khan River valleys / Primary uranium mineralisation of the central Damara Orogen, Namibia

A thesis submitted to the Faculty of Science in fulfilment of the requirements for the degree of Doctor of Philosophy at the School of Geosciences University of the Witwatersrand, Johannesburg, 2017 / Namibia, the 6th largest producer of uranium globally, has produced uranium from Pan African granite-hosted (primary) deposits since 1976, and from palaeochannel deposits since 2007; exporting 3 472 tonnes U in 2016. The large granite-hosted deposits at the Husab Mine are expected to add over 5 700 tonnes U/year at peak, while three large primary-hosted deposits remain in various stages of development at Goanikontes, the Ida Dome, and Valencia. This study presents a comprehensive geological, geochemical and uranium mineralogical appraisal of four of the major primary-hosted uranium deposits, all situated within the southern Central Zone (sCZ) of the polydeformational (D1-D3) Damara Belt. The sCZ comprises highly deformed Neoproterozoic sediments, unconformably draped over rheologically competent granite-gneiss domes and inliers of a Palaeoproterozoic basement. A suite of fractionated sheeted leucogranites (SLGs) are a characteristic of the final stages of Orogenic deformation; while most SLGs appear to precede D3 deformation and metamorphism (ca. 510 Ma); most of the mineralised SLGs across the region invade reduced-facies sediments in pressure shadows formed in the hinges and limbs of upright D3 antiforms, proximal to basement inliers. A pre-existing, six-fold, alphabetised SLG classification scheme is revised and extended to categorise distinctive and consistent field and petrographic characteristics of the SLGs across the region. Discriminating SLG sub-types is less consistent in standard geochemical diagrams, except where high field-strength (HFS) and rare-earth elements (REE) are concerned. REE profiles in pre-D3 SLGs reflect abundances, or paucities, of characteristic accessory mineral assemblages; while REE profiles show relative REE enrichment, prominent REEfractionation and -ve Eu anomalies in the uraniferous SLGs, reflecting lower-percentage partial melts in the more uraniferous samples. The overwhelming majority of primary uranium mineralisation is in magmatic uraninite, followed by coffinite which predominate as a replacement phase of uraninite, and more rarely as solid solution with thorite. The refractory minerals betafite and brannerite are rare, but are locally abundant in discrete, magmatic textures within uraniferous SLGs of some deposits. Hydrated uranyl silicates predominate in the supergene portions of the orebodies across the region. An electron microprobe study presents the first comprehensive assessment of uraninite compositions in the region, while Husab deposit betafite and brannerite compositions allow for a well-rounded comparison with refractory minerals from the Rössing deposits.

Key Words
Primary Uranium, Granite, Orogenic, Damara, Namibia, Rare Earth Elements, Mineralisation, Fractionation, High-grade Metamorphism, Economic Geology, Mining, Processing, Uraninite, Coffinite, Etango, Goanikontes, Husab, Ida Dome, Rössing, Valencia / XL2018

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:wits/oai:wiredspace.wits.ac.za:10539/23612
Date January 2017
CreatorsFreemantle, Guy George
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatOnline resource (674, 189 pages), application/pdf, application/pdf, application/pdf, application/pdf

Page generated in 0.0068 seconds