Return to search

Noise and whole-body vibration in underground locomotive operators

MPH, Occupational Hygiene, Faculty of Health Sciences, University of the Witwatersrand / Introduction
Locomotive operators in the mining industry are exposed to high levels of noise
and vibration. There is currently limited information indicating whole-body
vibration exposure levels conducted over an 8-hour time weighted average
(TWA) exposure period; most of the available data are based on instantaneous
measurements. The 10-Ton New Era locomotive was specifically designed with
the focus on areas such as ergonomics, safety, future automation, productivity
and flexibility of use. The locomotive has a single cab and can be driven and
controlled with maximum visibility in the direction of travel. Most mining houses
are converting from the use of the 10 Ton Goodman battery operated locomotive
to the 10Ton New Era locomotive, hence the focus of noise and vibration
measurements on the latter.
Objectives
This research report documents a project to measure noise and whole-body
vibration exposure levels of locomotive operators working in an underground
platinum mine. The objectives of the study are:
• to describe the eight hour time weighted average occupational noise
exposure levels of locomotive operators operating the 10-Ton New Era
locomotive in an underground platinum mine over 2008 and 2009;
• to describe personal whole-body vibration exposure levels of locomotive
operators operating the 10-Ton New Era locomotive in an underground
platinum mine over 2008 and 2009; and
5
• to determine whether personal noise and whole-body vibration exposure
levels of locomotive operators operating the 10-Ton New Era locomotive in an
underground platinum mine over 2008 and 2009 comply with national and
international standards.
Methods
Personal noise and whole-body vibration exposure measurements were obtained
from 21 underground locomotive operators. Measurements were conducted in
accordance with the procedures described in the SANS 10083 standard for
personal noise dosimetry and the ISO 2631-1 standard for whole-body vibration.
Determination of likely health risks for the operators were based on a comparison
of the measured time-weighted noise exposure levels with the South African
OEL and the ACGIH threshold limit value; whole-body vibration levels were
compared with the HGCZ limits presented in Annex B of the ISO 2631-1 standard
and the EU directive daily exposure limits.
Results
The measured noise and whole-body vibration levels taken over an 8-hour TWA
exposure period were higher when compared to national and international
standards. The mean LTWA levels for noise was 66.5 dB(A) with 12.5% of the
measurements exceeding the South African OEL of 85dB(A). 45% of the wholebody
vibration measurements fell within the HGCZ indicating that whole-body
vibration exposure on locomotive operators presents a moderate
probability for an adverse health outcome.
Discussion and Conclusion
Locomotive operators are exposed to potentially harmful levels of noise and
whole-body vibration. The Mine Health and Safety Act requires an employer to
assess the health and safety risks that hazards pose to their employees, and to
take reasonably practicable steps towards eliminating or controlling those risks.
Like any other risks at a workplace, noise and whole-body vibration needs to be
6
identified and controlled, and the approach to be taken is one of a risk
management

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:wits/oai:wiredspace.wits.ac.za:10539/9159
Date16 March 2011
CreatorsSouthon, Sharon
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0019 seconds