Return to search

Parallel Mining of Association Rules Using a Lattice Based Approach

The discovery of interesting patterns from database transactions is one of the major problems in knowledge discovery in database. One such interesting pattern is the association rules extracted from these transactions. Parallel algorithms are required for the mining of association rules due to the very large databases used to store the transactions. In this paper we present a parallel algorithm for the mining of association rules. We implemented a parallel algorithm that used a lattice approach for mining association rules. The Dynamic Distributed Rule Mining (DDRM) is a lattice-based algorithm that partitions the lattice into sublattices to be assigned to processors for processing and identification of frequent itemsets. Experimental results show that DDRM utilizes the processors efficiently and performed better than the prefix-based and partition algorithms that use a static approach to assign classes to the processors. The DDRM algorithm scales well and shows good speedup.

Identiferoai:union.ndltd.org:nova.edu/oai:nsuworks.nova.edu:gscis_etd-1360
Date01 January 2009
CreatorsThomas, Wessel Morant
PublisherNSUWorks
Source SetsNova Southeastern University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceCEC Theses and Dissertations

Page generated in 0.0017 seconds