Return to search

Studium plazmochemické redukce korozních vrstev na bronzi / Study of plasmachemical reduction of corrosive layers on bronze

The application of low-pressure low-temperature hydrogen plasma on artificial corrosion layers on bronze has been studied. For this purpose, three sets of bronze corroded samples were prepared. The first step of the model sample preparation was grinding of the bronze surface by using emery with 60, then 280 and finally by 600 grains density, in order to achieve the defined surface roughness. The next step of the work were optical and scanning electron microscopy observations with energy dispersive X-ray micro analysis (SEM-EDX) of the prepared bronze sample for purpose of surface structure characterization and element composition determination. Bronze samples with defined surface structure were corroded in different corrosion atmospheres. Three different model corrosion layers were formed by acidic atmospheres of hydrochloric acid, nitric acid and sulphuric acid. The element composition and structure of corrosion layer was determined by SEM-EDX again. The different amounts of oxygen, nitrogen, chlorine, sulfur, copper, tin and lead in the corrosion layer according to different types of corrosion atmospheres were determined. The next and also main part of the work was a plasma chemical reduction of corroded samples. The plasma reactor used the RF discharge (13.56 MHz) created in quartz tube with outer electrodes. The generation of capacitively coupled plasma in continuous or pulse mode by different supplied power was carried out. The plasma radiation emitted from the RF discharge during the sample treatment was measured by optical emission spectroscopy. The quantity of OH radical created in an active discharge by reactions of atomic hydrogen with the corrosion layer is a significant indicator of a reduction process. Therefore the OH radical band integral intensities observed as a function of the treatment time were used as a monitor for plasma chemical reduction process. The OH emission showed different behavior depending on corrosion layer composition during the plasma treatment. The transformations of the corrosion layer due to the plasma effect were investigated by means of SEM-EDX once again. Changes in the element composition of corrosion (or surface) layers in consequence of plasma chemical treatment are given. Generally, the element composition after the plasma chemical treatment showed explicitly that oxygen and chlorine content in the corrosion layer decreased, nitrogen was removed totally. Metal deposition on the reactor wall was observed occasionally. The SEM-EDX analyzes also showed that in some cases the tin content in sample surface layers was significantly decreased. For that reason, in case of bronze sample (artifacts) treatment, the sample and plasma temperature seem to be very important parameters for the process optimization. The acceptable conditions for plasma chemical treatment has been found in case of corrosion layer formed by nitric acid, only. The other corrosions will be a subject of further studies.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:216410
Date January 2008
CreatorsZemánek, Nikola
ContributorsSelucká, Alena, Krčma, František
PublisherVysoké učení technické v Brně. Fakulta chemická
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0025 seconds