This work deals with the PSO technique (Particle Swarm Optimization), which is capable to solve complex problems. This technique can be used for solving complex combinatorial problems (the traveling salesman problem, the tasks of knapsack), design of integrated circuits and antennas, in fields such as biomedicine, robotics, artificial intelligence or finance. Although the PSO algorithm is very efficient, the time required to seek out appropriate solutions for real problems often makes the task intractable. The goal of this work is to accelerate the execution time of this algorithm by the usage of Graphics processors (GPU), which offers higher computing potential while preserving the favorable price and size. The boolean satisfiability problem (SAT) was chosen to verify and benchmark the implementation. As the SAT problem belongs to the class of the NP-complete problems, any reduction of the solution time may broaden the class of tractable problems and bring us new interesting knowledge.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:235471 |
Date | January 2012 |
Creators | Krézek, Vladimír |
Contributors | Schwarz, Josef, Jaroš, Jiří |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0014 seconds