Return to search

Řešení inverzní úlohy obtékání leteckého profilu / Solution of inverse problem for a flow around an airfoil

Title: Solution of inverse problem for a flow around an airfoil Author: Mgr. Jan Šimák Department: Department of Numerical Mathematics Supervisor: prof. RNDr. Miloslav Feistauer, DrSc., dr. h. c., Department of Numerical Mathematics Abstract: The method described in this thesis deals with a solution of an inverse problem for a flow around an airfoil. It can be used to design an airfoil shape according to a specified velocity or pressure distribution along the chord line. The method is based on searching for a fixed point of an operator, which combines an approximate inverse and direct operator. The approximate inverse operator, derived on the basis of the thin airfoil theory, assigns a corresponding shape to the specified distribution. The resulting shape is then constructed using the mean camber line and thickness function. The direct operator determines the pressure or velocity distribution on the airfoil surface. We can apply a fast, simplified model of potential flow solved using the Fredholm integral equation, or a slower but more accurate model of RANS equations with a k-omega turbulence model. The method is intended for a subsonic flow.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:332312
Date January 2014
CreatorsŠimák, Jan
ContributorsFeistauer, Miloslav, Felcman, Jiří, Sváček, Petr
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0105 seconds