Manual data exploration in data cubes and searching for potentially interesting and useful information starts to be time-consuming and ineffective from certain volume of the data. In my thesis, I designed, implemented and tested a system, automating the data cube exploration and offering potentially interesting views on OLAP data to the end user. The system is based on integration of two data analytics methods - OLAP analysis data visualisation and data mining, represented by GUHA association rules mining. Another contribution of my work is a research of possibilities how to solve differences between OLAP analysis and association rule mining. Implemented solutions of the differences include data discretization, dimensions commensurability, design of automatic data mining task algorithm based on the data structure and mapping definition between mined association rules and corresponding OLAP visualisation. The system was tested with real retail sales data and with EU structural funds data. The experiments proved that complementary usage of the association rule mining together with OLAP analysis identifies relationships in the data with higher success rate than the isolated use of both techniques.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:359132 |
Date | January 2017 |
Creators | Koukal, Bohuslav |
Contributors | Chudán, David, Vojíř, Stanislav |
Publisher | Vysoká škola ekonomická v Praze |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0014 seconds