Return to search

Modelování velmi chladných plynů ve vícedimenzionálních optických mřížkách / Modelling of Ultracold Gases in Multidimensional Optical Lattices

Title: Modelling of Ultracold Gases in Multidimensional Optical Lattices Author: Miroslav Urbanek Department: Department of Chemical Physics and Optics Supervisor: doc. Ing. Pavel Soldán, Dr. Abstract: Optical lattices are experimental devices that use laser light to confine ultracold neutral atoms to periodic spatial structures. A system of bosonic atoms in an optical lattice can be described by the Bose-Hubbard model. Although there exist powerful analytic and numerical methods to study this model in one dimension, their extensions to multiple dimensions have not been as successful yet. I present an original numerical method based on tree tensor networks to simulate time evolution in multidimensional lattice systems with a focus on the two-dimensional Bose-Hubbard model. The method is used to investigate phenomena accessible in current experiments. In particular, I have studied phase collapse and revivals, boson expansion, and many-body localization in two-dimensional optical lattices. The outcome of this work is TEBDOL - a program for modelling one-dimensional and two-dimensional lattice systems. Keywords: Bose-Hubbard model, multidimensional system, optical lattice, tensor network

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:368009
Date January 2017
CreatorsUrbanek, Miroslav
ContributorsSoldán, Pavel, Opatrný, Tomáš, Veis, Libor
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0023 seconds