Return to search

Molecular modeling of biomolecules - surface interactions

Interactions between (bio)molecules, ions and solid surfaces play crucial role in many biological processes as well as in many scientific applications and understanding of this phenomenon on molecular level is a challenging task for today science. Computer simulations can provide detailed view on atomic level if carefully prepared and evaluated models are used. In this thesis, interactions of several types of (bio)molecules with inorganic surfaces are studied by classical and ab initio molecular dynamics. Chemisorbed biomolecules, namely DNA and oligopeptide, covalently attached to graphene and mercury surface, respectively, were studied to make link with DNA chip design and experimental label-free electrochemical measurements, respectively. Quartz (101) surface model applicable to wide range of pH conditions was developed and evaluated against experimental X-ray data. Physisorption of the nucleobases on quartz (101) surface and oxalate dianion on rutile (110) was examined and discussed.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:380955
Date January 2016
CreatorsKROUTIL, Ondřej
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0021 seconds