Master's thesis deals with multiclass image segmentation using convolutional neural networks. The theoretical part of the Master's thesis focuses on image segmentation. There are basics principles of neural networks and image segmentation with more types of approaches. In practical part the Unet architecture is choosen and is described for image segmentation more. U-net was applied for medicine dataset. There is processing procedure which is more described for image proccesing of three-dimmensional data. There are also methods for data preproccessing which were applied for image multiclass segmentation. Final part of current master's thesis evaluates results.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:400891 |
Date | January 2019 |
Creators | Slunský, Tomáš |
Contributors | Uher, Václav, Kolařík, Martin |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0014 seconds