Vícetřídá segmentace 3D lékařských dat pomocí hlubokého učení / Multiclass segmentation of 3D medical data using deep learning

Master's thesis deals with multiclass image segmentation using convolutional neural networks. The theoretical part of the Master's thesis focuses on image segmentation. There are basics principles of neural networks and image segmentation with more types of approaches. In practical part the Unet architecture is choosen and is described for image segmentation more. U-net was applied for medicine dataset. There is processing procedure which is more described for image proccesing of three-dimmensional data. There are also methods for data preproccessing which were applied for image multiclass segmentation. Final part of current master's thesis evaluates results.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:400891
Date January 2019
CreatorsSlunský, Tomáš
ContributorsUher, Václav, Kolařík, Martin
PublisherVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0014 seconds