This diploma thesis deals with automatic detection and measurement of the electron beam in the images from a transmission electron microscope (TEM). The introduction provides a description of the construction and the main parts of the electron microscope. In the theoretical part, there are summarized modes of illumination from the fluorescent screen. Machine learning, specifically convolution neural network U-Net is used for automatic detection of the electron beam in the image. The measurement of the beam is based on ellipse approximation, which defines the size and dimension of the beam. Neural network learning requires an extensive database of images. For this purpose, the own augmentation approach is proposed, which applies a specific combination of geometric transformations for each mode of illumination. In the conclusion of this thesis, the results are evaluated and summarized. This proposed algorithm achieves 0.815 of the DICE coefficient, which describes an overlap between two sets. The thesis was designed in Python programming language.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:413022 |
Date | January 2020 |
Creators | Polcer, Simon |
Contributors | Vičar, Tomáš, Chmelík, Jiří |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0058 seconds