Return to search

Počítačové modelování hranic dvojčatění ve slitinách s tvarovou pamětí / Computer modeling of twin-boundaries in shape memory alloys

This Master‘s thesis is focused on theoretical study of twinning in magnetic shape memory alloys based on Ni2MnGa using ab initio calculations of electronic structure within the projector augmented wave method. In particular, the effect of increasing concentration of manganese at the expense of gallium was studied on total energy and stress profiles along different deformation paths in the (10-1)[101] shear system of non-modulated martensite. Further, this work deals with the effect of the concentration of manganese on the energy of planar fault caused by presence of partial dislocation due to motion of twin boundary. The results show that the shear modulus in studied shear system increases with the increasing concentration of manganese as well as energy barrier and deformation characteristics along shear deformation paths increases, which makes the shear more difficult in Mn-rich alloys. Increasing concentration of manganese also leads to rising the planar fault energy. All these effects can be responsible for lower mobility of twin boundaries in alloys with higher concentration of manganese.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:416633
Date January 2020
CreatorsHeczko, Martin
ContributorsPokluda, Jaroslav, Zelený, Martin
PublisherVysoké učení technické v Brně. Fakulta strojního inženýrství
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0019 seconds